Смекни!
smekni.com

Изобарно-изотермический потенциал (стр. 2 из 3)

НОН3N – R – СООН,

где R – длинная углеводородная цепочка, содержащая также группы – СОNН–.

Ионогенные группы кислотной и основной природы могут располагаться не только по краям, но и внутри молекулы белка. Полипептидная цепь белков состоит из многих десятков и даже сотен аминокислот в различных сочетаниях, что обусловливает многообразие белков. Амино- и карбоксильные группы полипептидных цепей могут взаимодействовать между собой, образуя водородные связи. Эти связи образуются как между отдельными молекулами, так и внутри одной молекулы, а также и с молекулами растворителя. Глобулярные белки (макромолекулы шаровидной или эллипсоидной формы) – это альбумин, глобулины яичного белка, молока, сыворотки крови, пепсин желудочного сока. Молекулы коллагена и желатина (составная часть тканей кожи и сухожилий) имеют форму тонких вытянутых нитей.

В зависимости от рН раствора кислотная и основная группы проявляют различную склонность к диссоциации. В кислых растворах больше диссоциирована основная группа, в щелочной среде – кислотная. Когда в молекуле белка диссоциированы в основном кислотные группы, макромолекула имеет отрицательный заряд и в постоянном электрическом поле при электрофорезе будет передвигаться в сторону анода. Диссоциация основных и кислотных групп происходит в одинаковой степени в белке только при определенном значении рН раствора, это значение рН (обычно ниже 7) называется изоэлектрической точкой (ИЭТ). Такое изоэлектрическое состояние белка с ионизированными ионогенными группами можно изобразить следующим образом:

ОН- + Н3N+ – R – СОО- + Н+.

Разделение белков по фракциям методом высаливания проводят обычно вблизи изоэлектрической точки, т.е. при определенных значениях рН в растворе. По достижении изоэлектрической точки, когда кулоновское взаимодействие групп разного заряда происходит уже по всей длине цепи, молекула белка сворачивается в клубок.

Денатурация – необратимая коагуляция белка, вызываемая, например, его нагреванием, добавлением спирта, действием световой энергии и др. Этот вид коагуляции характерен (из лиофильных коллоидов) только для белковых веществ. Так, необратимое изменение свойств яичного белка при его термической обработке (достаточно 60 – 65 оС) происходит только в присутствии воды, тогда как сухой яичный белок не денатурируется при температуре 100 оС и даже выше.

Процесс термической денатурации белка, который характерен для белков глобулярного типа, обусловлен разрывом слабых водородных связей внутри глобулы и последующим распрямлением и вытягиванием макромолекулы. При этом вследствие изменения структуры белка изменяются и его свойства, в частности повышается вязкость раствора и понижается растворимость полимера.

Несмотря на схожесть процессов денатурации и высаливания белков, у них имеется и важное отличие: денатурация необратима, а высаливание обратимо.

Свойства дисперсных систем и ВМС имеют сходства и отличия.

Сходства: как и дисперсные системы, ВМС присущи явления осмоса, диффузии и коагуляции (обратимой и необратимой).

Различия: явления высаливания и денатурации присущи только ВМС.

Процессом образования дисперсных систем из ВМС можно считать процесс высаливания.

67. Определить частичную концентрацию гидрозоля Al2O3, если его массовая концентрация 0,3 г/л, коэффициент диффузии сферических частиц золя 2·10-6 м2/сут., плотность гидрозоля 4 г/см3, вязкость дисперсионной среды 10-3 н·с/м2 и температура 293 К.

Из уравнения Эйнштейна радиус частицы:

где NА – число Авогадро, 6 10 23 молекул/моль;

h – вязкость дисперсионной среды, Н с/м2(Па с);

r – радиус частицы, м;

R – универсальная газовая постоянная, 8,314 Дж/моль · К;

T – абсолютная температура, К;

число 3,14.

Находим массу частицы:

Находим концентрацию частицы:

Ответ: 0,053 г/см3

75. Адсорбция на поверхности раздела Ж/Г. Адсорбционное уравнение Гиббса, его анализ и область использования. Адсорбция – процесс самопроизвольного поглощения вещества (адсорбтива) поверхностью адсорбента. Уравнение Гиббса устанавливает взаимосвязь величины адсорбции (Г,кмоль/кг или кмоль/м2) с изменением поверхностного натяжения (Дж/м2 от концентрации раствора (С, кмоль/л).

,

где С – концентрация раствора, кмоль/л;

R – универсальная газовая постоянная;

T – температура;

d/dС – производная, являющаяся мерой поверхностной активности; может быть определена графически по зависимости поверхностного натяжения от концентрации (при 0).

Адсорбция на жидкой поверхности может приводить как к уменьшению поверхностного натяжения (например, при адсорбции малорастворимых, дифильных поверхностно-активных веществ), так и к его увеличению (в частности, при адсорбции поверхностно-инактивных веществ, т. е. хорошо растворимых в воде неорганических электролитов) или не изменять его (растворы сахаров в воде). В последнем случае вещество распределяется равномерно между поверхностным слоем и объемом раствора.

83. Написать формулы мицелл: Al(OH)3, стабилизированной AlCl3; SiO2, стабилизированной H2SiO3. Для какой из указанных мицелл лучшим коагулятором является FeCl3, Na2SO4?

[m (SiO2) n Si4+ (n -x)

2-]х+ x

[m (AlCl3) nCl · (n -x) Al3+]х–xAl3+) Лучшим коагулятором будет FeCl3.

94. Защита коллоидных частиц с использованием ВМС. Механизм защитного действия. Белки, углеводы, пектины как коллоидная защита.

Коллоидная защита – стабилизация дисперсной системы путем образования адсорбционной защитной оболочки вокруг частиц дисперсной фазы. Белки, пектины и углеводы выступают как стабилизаторы дисперсных систем, предохраняющих системы от дальнейшей коагуляции или седиментации.

103. Студни как эластичные гели. Механизм их образования и факторы, определяющие скорость студнеобразования. Процессы студнеобразования в пищевой технологии.

Студни – это ограниченно набухшие полимеры, их можно рассматривать как частную форму эластичных гелей. Студни – гомогенные системы, они нетиксотропны. Жидкость, заполняющая сетку студня, называется интермицеллярной жидкостью.

Растворы ВМС в некоторых условиях (изменение температуры, концентрирование раствора или при добавлении небольшого количества электролита) могут самопроизвольно терять свою текучесть и переходить в студни, т.е. в систему с некоторыми свойствами твердого тела. Причина такого перехода – возникновение связей между макромолекулами ВМС за счет целого спектра молекулярных контактов. Структура студней образована за счет дисперсионных сил и водородных связей, также в ее создании принимают участие и обычные химические связи. Первоначально в растворе образуются кратковременные ассоциаты из макромолекул как за счет взаимодействия гидрофильных участков макромолекул, так и за счет молекулярных контактов между гидрофобными частями разных молекул. Когда время существования ассоциатов становится весьма продолжительным, то система с созданной пространственной сеткой начинает проявлять свойства твердой фазы.

Студни образуются также в результате ограниченного набухания или вследствие охлаждения раствора ВМС. При нагревании каркас студня разрушается и система снова разжижается. Этот же эффект достигается и путем механического воздействия на систему – перемешиванием или встряхиванием.

Если в студень, содержащий в свободной воде низкомолекулярное вещество, диффундирует другое, способное образовывать с первым нерастворимое соединение, то реакция осаждения идет только в определенных зонах структуры студня. В результате в студне наблюдаются слои или кольца, образованные этим осадком.

Электропроводность студней близка к электропроводности растворов, из которых эти студни были получены, то есть трехмерная сетка, образующаяся в студне, не мешает движению сравнительно маленьких ионов через его раствор.

Старение студней, как и гелей, проявляется в виде явления, которое носит название синерезис. Явление синерезиса характерно как для студней, так и для эластичных гелей (например, отделение сыворотки при свертывании молока, «слеза» в сыре и др.).