Смекни!
smekni.com

Золь-гель метод (стр. 5 из 7)

Эффект выжигания стационарных провалов в спектрах ионов Eu3+ описан в работе [52] для полученного золь-гель методом европийсодержащего стекла. Кроме того, двухзарядные ионы европия являются многообещающим активатором для получения эффективных люминофоров и детекторов ионизирующей радиации [53, 54].

3.2 Кварцевые стекла, активированные ионами Eu2+

Важнейшими параметрами активированных стекол, характеризующими эффективность преобразования энергия возбуждения в свечение, являются квантовый и энергетический выходы люминесценции. Если для редкоземельных ионов, люминесценция которых обусловлена запрещенными по четности f—f-переходами, эти параметры хорошо исследованы [1-4], то для активаторов, у которых излучательными являются состояния смешанной электронной конфигурации 4fn-15d (Еu2+ и Се3+), сведения об эффективности свечения крайне немногочисленны [5,6]. Вместе с тем, кварцевые стекла с Еu2+ и Се3+ являются перспективными с точки зрения: использования их в качестве катодолюминофоров и детекторов ионизирующего излучения.

Проведено измерение абсолютных квантового и энергетического выходов люминесценции Еu2+ и Се3+ ,в кварцевых стеклах, при разных видах возбуждения. Кроме того, выявлено сильная спектральнокинетическая неэквивалентность активаторных центров Еu2+ и Се3+ в кварцевом стекле [7], поэтому была предпринята попытка обнаружить, проявление этой неэквивалентности в квантовом выходе люминесценции. Для этого была измерена его зависимость от длины волны возбуждающего света (λв).

Абсолютный квантовый выход люминесценции (q) измерялся на установке с фотометрическим шаром, аналогичной описанной в [2], по модифицированной методике. Обычно количество возбуждающего света, поглощенного образцом, и интенсивность его люминесценции измеряютсяс использованием полностью скрещенных светофильтров Фв и Фл, пропускающих только возбуждающий свет или свет люминесценции соответственно. Однако близость спектральных областей возбуждения и свечения не позволяет подобрать такие светофильтры для выделения широкополосной люминесценции Еu2+ и Се3+ (рис. 1) без сильных искажений ее спектра. Правда, если в спектральной области возбуждения независимо измерить пропускание образца, расположенного в шаре, то скрещенности светофильтров можно не добиваться, а определять интенсивность люминесценции с помощью приемного светофильтра Ф+л, который прозрачен и для возбуждающего света. Для этого только нужно учесть сигнал, создаваемый возбуждающим светом, который пропущен образцом в шаре. Роль Ф+л в нашем случае играл светофильтр БС-11 (3 мм).

Пропускание образцом возбуждающего света измерялось с использованием светофильтра Фв, установленного после сферы и не пропускающего свет люминесценции. В качестве Фв в зависимости от области возбуждения применялись следующие светофильтры: ФС-6 (4 мм) на область 410— 435 нм; УФС-1 ( 2мм) на область 380—410 нм; УФС-2 (2 мм) на область 350—380 нм; комбинация фильтров УФС-2 (2 мм) и ЖС-20 (3 мм) для λв=302 и 313 нм.

Процедура измерения квантового выхода стекол с Еu2+ и Се3+ сводиться к следующему. После сферы перед ФЭУ-71 устанавливался фильтр Фв, и без образца в полости сферы измерялась интенсивность возбуждающего света I0в. После внесения внутрь сферы исследуемого образца определялось количество света Iобрв, пропущенного образцом. После замены светофильтра Фв на Ф+л измерялся суммарный сигнал Iлобр, создаваемый светом люминесценции и той частью возбуждающего света, которую не поглотил образец. После удаления образца измерялся сигнал Iол от всего возбуждающего света.

Вычисление квантового выхода люминесценции производилось по формуле

q= Iлобр - Iло (1 - P)/Iло*P * K(λв)/Kлюм(λ) (1)

Р =Iво-Iвобр/Iво (2)

доля возбуждающего света, поглощенного образцом; К в) и Клюм(λ) — коэффициенты спектральной чувствительности установки с шаром для возбуждающего света и света люминесценции соответственно, причем Kлюм(λ)=∫I(λ) K(λ) dλ / ∫I(λ) dλ (3)(3) где 1 (λ) — интенсивность в спектре люминесценции, измеренном на установке, описанной в [7]. Спектральная чувствительность установки для измерения квантового выхода люминесценции определялась с помощью спектрально неселективного пироприемника ЛПП-2 при постановке после шара светофильтра Фл+.


4. Свойства квантовых стекол, активированные ионами европия

4.1 Спектрально-люминесцентные свойства Eu- и Ce-Eu - содержащих кварцевые гель-стекол

При соактивации Sm-содержащих кварцевых гель–стекол церием образуются сложные центры, которые радикально отличаются своими спектрально-люминесцентными характеристиками от центров одноактивированного стекла и включают соединенные мостиковым кислородом ионы Sm3+ и Се4+. Ионы Sm3+ в таких центрах характеризуются в среднем более высокой симметрией локального окружения и эффективной сенсибилизацией люминесценции фотовосстановленными ионами (Се4+)- [ 118]. Существенное влияние церия в аналогичных стеклах было обнаружено и на структуру оптических центров неодима [39]. Таким образом, можно предположить, что церий будет влиять и на структуру и свойства сложных оптических центров других лантаноидов в гельных кварцевых стеклах.

Попробуем получить новые данные по структуре таких сложных центров в кварцевых гель-стеклах путем использования в качестве спектроскопического зонда ионов Eu3+, положение энергетических уровней 4f-конфигурации и интенсивности внутриконфигурационных переходов которых достаточно однозначно расчитываются с помощью методов теории кристаллического поля. Параллельно попытаемся выяснить наиболее эффективные каналы возбуждения люминесценции этих ионов в одно - и соактивированных церием стеклах.

4.2 Спектры поглощения Eu- и Ce-Eu-содержащих кварцевых гель-стекол

На рис. 4.1 изображены спектры поглощения неактивированного, Eu и Ce-Eu-содержащих кварцевых гель-стекол в видимой и ультрафиолетовой областях. Видно, что в спектре одноактивированного стекла с С(EuCl3)=3 масс % наблюдаются слабые узкие полосы при 395 (переход 7F0®5L6 ионов Eu3+), 460 (переход 7F0®5D2 ионов Eu3+) и 530 нм (переход 7F0®5D1 ионов Eu3+) и широкая интенсивная полоса при 230 нм (кривая 1). Термообработка этого стекла в водороде ведет к заметному ослаблению широкой полосы и появлению “плеча” при 300 нм, длинноволновое “крыло” которого тянется до 450 нм (кривая 2). Спектр соактивированного стекла с 2С(СеCl3)=С(EuCl3)=1 масс % отличается от спектра одноактивированного снижением относительной интенсивности полосы при 395 нм и появлением дополнительной интенсивной широкой полосы при 250 нм (кривая 3). В результате термообработки данного стекла в водороде эта полоса трансформируется в относительно слабоинтенсивную полосу при 320 нм и становится заметной более коротковолновая полоса, присущая одноактивированному стеклу (кривая 4).

Узкополосные спектры поглощения исследованных стекол являются типичными для Eu-содержащих материалов и обусловлены f-f-переходами данного активатора. При этом монотонное увеличение k с уменьшениемl на кривой 1 связано со светорассеянием из-за микронеоднородности стекла, вызванной несовместимостью высококоординированных европий-кислородных полиэдров со структурным каркасом SiO2, а интенсивная широкая полоса в области 230 нм вероятнее всего обусловлена поглощением в полосе переноса заряда (ПЗ) с лигандов на ионы Eu3+. Уменьшение интенсивности этой полосы с одновременным уширением и появлением “плеча” при 300 нм в результате отжига Eu-содержащего стекла в водороде (кривая 2) можно связать с образованием в стекле стабильных ионов Eu2+. Как известно [124], спектры поглощения последних характеризуются наличием двух широких полос при 250 и 300 нм, из которых коротковолновая полоса в 2-3 раза интенсивнее длинноволновой. Появление интенсивной полосы при 250 нм в спектре соактивированного стекла (кривая 3) обусловлено переносом заряда с лигандов на ионы Се4+ [38]. Трансформация этой полосы для отожженного в водороде одноименного стекла в слабоинтенсивную полосу при 320 нм (кривая 5) связано с уменьшением концентрации четырехзарядного церия в результате его восстановления до трехзарядного, поглощающего в отмеченной области [38].

4.3 Спектры люминесценции Еu-содержащих стекол

На рис. 4.2 изображены спектры люминесценции и ее возбуждения Eu-содержащих ксерогеля и кварцевого гель-стекла с C(EuCl3)=3 масс %. Видно, что при возбуждении с lвозб=395 нм, соответствующей переходу 7F0®5L7 ионов Eu3+, люминесценция ксерогеля представлена рядом слаборазрешенных узких полос, наиболее интенсивная из которых соответствует переходу 5D0®7F2 (l~615 нм), и едва заметной широкой полосой при 450 нм (кривая 1). При lвозб=320 нм узкополосный спектр ксерогеля изменяется незначительно (по этой причине на рис. не показан), однако появляется слаборазрешенная интенсивная и широкая полоса при 380 нм (кривая 2). Спектр возбуждения люминесценции ксерогеля при lрег=615 нм представлен узкими полосами, соответствующими f-f-переходам ионов Eu3+, и широкой полосой при 270 нм (кривая 3). В спектре люминесценции стекла при lвозб=395 нм (кривая 4) наблюдается ослабление относительной интенсивности полосы 5D0®7F4(l~700 нм) и небольшое усиление расщепления полос 5D0®7F1(l~590 нм) и 5D0®7F2 (l~615 нм). Заметим, что с повышением Т до 298К относительная интенсивность узких люминесцентных полос практически не изменяется. Смещение lвозб в коротковолновую сторону слабо отражается на узкополосном спектре и сопровождается появлением гораздо менее интенсивной, по сравнению с ксерогелем, ультрафиолетовой люминесценции. Спектр возбуждения люминесценции стекла при lрег=615 нм отличается от одноименного спектра ксерогеля значительно большей относительной интенсивностью полосы при 270 нм, а также приблизительно одинаковой интенсивностью полос 7F0®5L6 и 7F0®5D2 (кривая 5). Сканированиеlрег по полосам 5D0®7Fjведет к небольшому перераспределению интенсивности в этом спектре. При уменьшении С(EuCl3) до 0,3 масс % принципиальных изменений рассмотренных спектров не происходит.