Контрольная работа
по химии
вариант № 3
2009
Многие ПАВ вообще не образуют сферических мицелл, а другие, хотя и образуют, но только в ограниченных концентрационных и температурных интервалах. Можно выделить три типа поведения ПАВ или полярных липидов в зависимости от концентрации.
1. ПАВ хорошо растворимо в воде и физико-химические свойства растворов плавно изменяются от области KKM до насыщения. Такая картина указывает на то, что с увеличением концентрации существенные изменения в структуре мицелл не происходят: мицеллы остаются небольшими и их форма мало отличается от сферической.
2. ПАВ хорошо растворимо в воде, однако при увеличении концентрации наблюдается резкое изменение некоторых свойств системы. В этом случае происходят заметные изменения самоорганизующихся структур.
3. ПАВ плохо растворимо в воде. В этом случае происходит фазовое разделение системы при низких концентрациях ПАВ.
Эти три варианта характеризуются различными областями существования изотропной фазы раствора. В любом случае новая фаза, выделяющаяся при концентрациях выше насыщения, может быть одной из следующих форм:
• жидкокристаллическая фаза,
• твердая фаза ПАВ,
• второй, более концентрированный раствор ПАВ.
Эти фазы сильно различаются по физико-химическим свойствам, поэтому при любом практическом использовании ПАВ важно контролировать структуру фаз. Области существования различных фаз и фазовые равновесия между ними описывают фазовыми диаграммами, которые важны не только для практического применения ПАВ, но и для более глубокого понимания принципов самоорганизации ПАВ.
Короткоцепные ПАВ, например с углеводородными цепями в 8 или 10 атомов углерода, обычно обнаруживают медленное и постепенное изменение свойств растворов без разделения на фазы вплоть до высоких концентраций.
Зависимость относительной вязкости растворов ПАВ от объемной доли сферических мицелл. Кривые соответствуют теоретическим предсказаниям для двух сферических частиц: штриховая линия - не взаимодействующие частицы; сплошная линия - с учетом межмицеллярного взаимодействия. Точки - экспериментальные данные для мицеллярных систем Q2E5 с одинаковым весовым количеством солюбилизированного декана
Вязкость систем плавно изменяется вплоть до высоких концентраций и приблизительно в соответствии с теорией, описывающей поведение сферических частиц. Методами светорассеяния и спектроскопии ЯМР получены прямые доказательства сферичности агрегатов вплоть до приближения к точке фазового перехода. В некоторых случаях деформации мицелл становятся заметными только при объемных долях мицелл порядка 0.3.
Растворы длинноцепочечных ПАВ, например с углеводородными "хвостами" С 3или более, уже при низких или промежуточных концентрациях обнаруживают резкое увеличение вязкости с ростом концентрации. На рис. представлена зависимость вязкости от концентрации. В этом случае мицеллы растут с увеличением концентрации, причем сначала образуются короткие вытянутые сфероиды или цилиндры, а затем длинные цилиндрические или червеобразные мицеллы.
Третий, встречающийся реже тип поведения - это рост очень длинных червеобразных мицелл, происходящий уже при очень низких концентрациях, иногда лишь немного превышающих ККМ. Рост мицелл обычно происходит в одном измерении с образованием агрегатов с круговым поперечным сечением. Гидрофобное ядро имеет радиус, совпадающий с радиусом сферических мицелл и, следовательно, равный длине вытянутой алкильной цепи молекулы ПАВ. Линейная длина стержнеобразных мицелл может варьироваться в широких пределах, примерно от 10 нм до многих сотен нанометров.
В случае ПАВ, способных к образованию больших мицелл, вязкость быстро увеличивается с ростом концентрации. Зависимость вязкости нулевого сдвига от концентрации.
При повышении концентрации часто наблюдается переход от сферических агрегатов к длинным стержнеобразным или червеобразным мицеллам.
Увеличение размера мицелл характерно для большинства ПАВ. Отметим факторы, влияющие на увеличение размера мицелл ионогенных ПАВ.
1. Стремление к росту резко возрастает с увеличением длины алкильной цепи, короткоцепные ПАВ вообще не обнаруживают склонности к увеличению размера мицелл.
2. Рост мицелл сильно зависит от температуры, ему способствует понижение температуры. Например, в случае бромида гексадецилтриметиламмония размер мицелл увеличивается при 30°С, но этого не происходит при 50°С.
3. В то время как природа противоиона лишь слабо влияет на KKM для данного типа ПАВ, рост мицелл, напротив, существенно зависит от природы противоиона. Эта зависимость определяется полярной группой ПАВ. Например, для бромида гексадецилтриметиламмония характерно увеличение размера мицелл, но его не происходит, если в качестве противоиона выступает хлорид-ион. Свойства щелочных додецилсульфатов также зависят от противоиона: незначительный рост мицелл характерен для Li+, умеренный для Na+ и очень существенный для K+ или Cs+. Если в качестве полярной группы ПАВ выступает карбоксилат, то для ионов щелочных металлов наблюдается обратная зависимость мицеллярного роста. Органические противоионы, например сали-цилат-ион, индуцируют сильный рост мицелл длинноцепочечных катионных ПАВ при низких концентрациях.
4. Если для системы характерен рост мицелл, то обычно размер мицелл резко растет с увеличением концентрации ПАВ.
5. Большие мицеллы существенно полидисперсны.
6. На размер мицелл сильно влияют растворенные вещества, присутствующие в системе. Введение солей способствует росту мицелл. Молекулы солюбилизи-рованного вещества по-разному влияют на размер мицелл, причем эффекты, как правило, определяются природой ПАВ. Неполярные солюбилизаты, например алканы, локализующиеся в ядре мицеллы, ингибируют рост мицелл.
Размер мицелл додецилсульфатов щелочных металлов уменьшается с увеличением температуры и чрезвычайно чувствителен к природе противоиона. Состав систем: LiDS,20 г/л + IMLiCl; NaDS,20 г/л + 0.45 MNaCl; KDS, 5 г/л + 0.45 MKCl; CsDS, 5 г/л + 0.45 MCsCl. Видно, что в системах с KDS и CsDS, несмотря на более низкую концентрацию этих ПАВ, размеры увеличиваются сильнее, чем в системах, содержащих LiDS или NaDS.
Число агрегации мицелл додецилсульфата натрия увеличивается с ростом температуры и концентрации введенных солей
Спирты и ароматические соединения, локализующиеся на периферии мицелл, наоборот, сильно индуцируют рост мицелл. Так, мицеллы бромида гексадецилтриметиламмония не увеличиваются в размере в присутствии цик-логексана, но резко растут в присутствии гексанола или бензола.
Мицеллы ПАВ других типов растут под влиянием иных факторов. Рост мицелл неионогенных ПАВ полиоксиэтиленового ряда с увеличением концентрации более заметен для ПАВ с небольшими полярными группами. Сильный рост мицелл наблюдается для молекул ПАВ, содержащих от четырех до шести оксиэтиленовых звеньев. Однако размеры мицелл почти не изменяются независимо от условий, если поверхностно-активное вещество содержит восемь или более оксиэтиленовых групп. В отличие от ионогенных ПАВ, для неионогенных ПАВ характерен мицеллярный рост при повышении температуры.
Дисперсии крупных мицелл имеют много общих свойств с растворами линейных полимеров, поэтому мицеллы ПАВ иногда называют "живыми полимерами". Аналогия в поведении таких систем позволила успешно применять теории и подходы, развитые для растворов полимеров, для описания ми-целлярных систем ПАВ. Некоторые отличия дисперсий ПАВ от растворов полимеров затрудняют сравнение этих систем. Эти различия состоят прежде всего в сильной зависимости "степени полимеризации" от некоторых условий. Более того, при некоторых условиях, например при очень больших концентрациях, процесс роста мицелл может приводить к образованию разветвленных структур.
Большие мицеллы могут сильно различаться по гибкости, быть жесткими стержнями, ограниченно гибкими или очень гибкими мицеллами. Их можно, как и полимеры, характеризовать персистентной длиной. На гибкость мицелл ионных ПАВ сильное влияние оказывает присутствие электролита, причем мицеллы, по свойствам отвечающие жестким стержням, могут переходить в очень гибкие мицеллы.
В разбавленных растворах, когда мицеллы не перекрываются, они ведут себя как независимые единицы. При превышении объемной доли мицелл, равной ф*, т.е. в полуразбавленном концентрационном режиме, мицеллы запутываются и возникают сетки зацепления. Такие сетки можно описать с помощью корреляционной длины, которая не зависит от размера мицелл и их полидисперсности. В системе, показанной на рис., объемная доля перекрывания равна - 0.1%. Вязкость дисперсий длинных линейных мицелл можно анализировать в рамках представлений о мицеллярном движении, используя, например, модель так называемой рептации для полимерных систем. Подразумевается, что мицеллы "ползут" через трубки в пористой структуре, образованной другими мицеллами. Вязкость нулевого сдвига з зависит от размера мицеллы и объемной доли ц:
Экспериментально было установлено, что вязкость существенно растет как с увеличением размера мицеллы, так и с ростом концентрации ПАВ.
Мицеллы растут преимущественно линейно, хотя могут образовываться дискообразные или пластинчатые структуры, но такие мицеллы обычно имеют небольшой размер и существуют в очень узком интервале условий. Линейный рост мицелл может приводить к разветвленным структурам, что при достаточно больших концентрациях может вызывать переход к полностью связным мицеллярным структурам ПАВ, для которых концепция индивидуальных мицелл теряет смысл.