Смекни!
smekni.com

Жидкокристаллические соединения (стр. 3 из 5)

4.3 Холестерический тип ЖК

Наиболее сложный тип упорядочения молекул ЖК холестерический(холестерики), образуемый хиральными (оптически активными) молекулами, содержащими асимметрический атом углерода. Это означает, что такие молекулы являются зеркально-несимметричными в отличие от зеркально-симметричных молекул нематиков. Впервые холестерическаямезофаза наблюдалась для производных холестерина, откуда и произошло ее название. Холестерики во многих отношениях подобны нематикам, в которых реализуется одномерный ориентационный порядок; они образуются также при добавлении небольших количеств хиральных соединений (1-2 мол. %) к нематикам. Как видно из (рис. 4, в), в этом случае дополнительно реализуется спиральная закрученность молекул, и очень часто холестерик называют закрученным нематиком.[4]

Отсутствие дальнего трансляционного порядка обусловливает текучесть холестерика. Локально структуры нематика и холестерика очень похожи, однако на больших расстояниях ориентация директора n в холестерике оказывается винтовой. Когда шаг винта совпадает с длинной волны падающего света, возникает сильное брэгговское отражение; если при этом длина волны лежит в видимой области, холестерический ЖК кажется ярко окрашенным. Если этот шаг бесконечен, кристалл является обычным нематиком, если он равен нулю, система обладает цилиндрической симметрией.[3]

Шаг винтовой молекулярной упаковки в таком закрученном ЖК чувствителен к температуре. При освещении монохроматическим светом наиболее чувствительных холестериков заметное глазом изменение интенсивности отраженного света происходит при изменении температуры всего на 0,001°С. Для приложений, в которых не требуется столь высокая чувствительность, можно использовать естественный свет – видимые изменения происходят при изменении температуры на 0,01°С.

Холестерический ЖК ведет себя при освещении его видимым светом как дифракционная решетка. В этом отношении его можно уподобить обычному кристаллу (например, кристаллу NaCl), на котором происходит дифракция рентгеновых лучей.[2]

При фиксированном угле отражения условия интерференции выполняются только для лучей одного цвета, и слой (или пленка) холестерика кажется окрашенным в один цвет. Этот цвет определяется шагом спирали Р, который при нормальном угле падения света простым образом связан с максимумом длины волны отраженного света lmax:

P = lmax / n, (2)

где n — показатель преломления холестерика. Этот эффект избирательного отражения пленкой холестерика света с определенной длиной волны получил название селективного отражения. В зависимости от величины шага спирали, который определяется химической природой холестерика, максимум длины волны отраженного света может располагаться в видимой, а также в ИК- и УФ-областях спектра, определяя широкие области использования оптических свойств холестериков. У большинства холестериков с ростом температуры шаг спирали уменьшается, а следовательно, уменьшается и длина волны селективно отраженного света lmax (рис. 9).


Рис. 9. Температурная зависимость длины волны селективного отражения света lmax слоя холестерического жидкого кристалла — холестерилпеларгоната.

Любой из трех типов мезофаз рассматривается обычно как непрерывная анизотропная среда, где в небольших по размерам микрообъемах (их часто называют роями или доменами), состоящих, как правило, из 104-105 молекул, молекулы ориентированы параллельно друг другу.[1]

Неориентированные холестерики образуют конфокальную текстуру, которая состоит из отдельных и связанных между собой сложных образований, называемых конфокальными доменами (рис. 10).

Рис. 10. Конфокальная текстура жидких кристаллов.

5. Лиотропные жидкие кристаллы

В отличие от термотропных жидких кристаллов лиотропные жидкие кристаллы образуются при растворении ряда амфифильных соединений в определенных растворителях и имеют, как правило, более сложную структуру, чем термотропные жидкие кристаллы. Амфифильные соединения состоят из молекул, содержащих гидрофильные и гидрофобные группы. Амфифильные молекулы располагаются так, чтобы обеспечить минимум свободной энергии, и агрегаты молекул при высокой и низкой влажности существенно не различаются.[1]

Водорастворимая часть

молекулы

Водонерастворимая часть

молекулы

Схема 1. Общая формула фосфолипидов и растворимость

в воде разных частей фосфолипидной молекулы.

В природе обнаружено несколько геометрических форм расположения амфифильных молекул (табл. 2), кристаллическая упаковка разрушается с образованием ламелярной (слоистой) структуры. При дальнейшем добавлении воды может возникнуть кубическая структура, а затем гексагональная упаковка, далее мицеллярная структура и, наконец, истинный раствор.[2]

Такие соединения широко распространены в природе. Так, например, любая жирная кислота является амфифильной. Ее молекулы состоят из двух частей: полярной "головки" (СООН-группа) и углеводородного "хвоста" [СН3(СН2)n—]. Подобные соединения при растворении в воде, как правило, образуют мицеллярные растворы, в которых полярные головки торчат наружу, находясь в контакте с водой, а углеводородные хвосты, контактируя друг с другом, смотрят вовнутрь (схема 1). Такие мицеллы (рис. 11, а) и являются теми структурными элементами, из которых строятся лиотропные жидкие кристаллы, формируя, например, цилиндрическую или ламеллярную формы (рис. 11, б,в).[4]

Рис. 11. Некоторые типы лиотропных жидкокристаллических структур, образованные амфифильными молекулами в водных растворах: а - цилиндрическая мицелла, б -гексагональная упаковка цилиндрических мицелл, в - ламеллярныйсмектический жидкий кристалл; г - строение мембраны, состоящей изфосфолипидного двойного слоя ( 1 ) и молекул белков (2).

В отличие от термотропных жидких кристаллов, где формирование определенного типа мезофазы определяется лишь температурой, в лиотропных системах тип структурной организации определяется уже двумя параметрами: концентрацией вещества и температурой. Лиотропные жидкие кристаллы наиболее часто образуются биологическими системами, функционирующими в водных средах. Именно в этих системах в наиболее яркой форме проявляются уникальные особенности жидких кристаллов, сочетающих лабильность с высокой склонностью к самоорганизации. Ограничимся лишь одним примером, относящимся к клеткам и внутриклеточным органеллам, покрытым тонкими высокоупорядоченными оболочками - мембранами. Современные структурные исследования показывают, что мембраны представляют собой типичные лиотропные ламеллярные лабильные ЖК-структуры, составленные из двойного слоя фосфолипидов, в котором "растворены" белки, полисахариды, холестерин и другие жизненно важные компоненты (рис. 11, г). Такое анизотропное строение мембраны, с одной стороны, позволяет защищать ее внутреннюю часть от нежелательных внешних воздействий, а с другой стороны, ее "жидкостной" характер обеспечивает высокие транспортные свойства (проницаемость, перенос ионов и др.), что придает клетке определяющую роль в процессах жизнедеятельности.[7]

6. Анизотропия физических свойств ЖК

Поскольку основным структурным признаком жидких кристаллов является наличие ориентационного порядка, обусловленного анизотропной формой молекул, то естественно, что все их свойства, так или иначе, определяются степенью ориентационного упорядочения. Количественно степень упорядоченности жидкого кристалла определяется параметром порядка S, введенным В.И. Цветковым в 40-х годах формула 1.