Смекни!
smekni.com

Дмитрий Иванович Менделеев – ученый с мировыми заслугами (стр. 4 из 8)

По поводу элемента "экасилиция" Менделеев писал: "Мне кажется, наиболее интересным из, несомненно, недостающих металлов будет тот, который принадлежит к IV группе аналогов углерода, а именно, к III ряду. Это будет металл, следующий тотчас же за кремнием, и потому назовем его экасилицием". Действительно, этот еще не открытый элемент должен был стать своеобразным "замком", связывающим два типичных неметалла - углерод C и кремний Si - с двумя типичными металлами - оловом Sn и свинцом Pb.

Затем предсказал существование еще восьми элементов, в том числе "двителлура" - полония (открыт в 1898 г.), "экаиода" - астата (открыт в 1942-1943 гг.), "двимарганца" - технеция (открыт в 1937 г.), "экацезия" - Франция (открыт в 1939 г. )

В 1875 году французский химик Поль-Эмиль Лекок де Буабодран открыл в минерале вюртците - сульфиде цинка ZnS - предсказанный Менделеевым "экаалюминий" и назвал его в честь своей родины галлием Ga (латинское название Франции - "Галлия").

Менделеев точно предсказал свойства экаалюминия: его атомную массу, плотность металла, формулу оксида El2O3, хлорида ElCl3, сульфата El2(SO4)3. После открытия галлия эти формулы стали записывать как Ga2O3, GaCl3 и Ga2(SO4)3. Менделеев предугадал, что это будет очень легкоплавкий металл, и действительно, температура плавления галлия оказалась равной 29,8 оС. По легкоплавкости галлий уступает только ртути Hg и цезию Cs.

Среднее содержание Галлий в земной коре относительно высокое, 1,5-10-30% по массе, что равно содержанию свинца и молибдена. Галлий — типичный рассеянный элемент. Единственный минерал Галлий — галдит CuGaS2, очень редок. На воздухе при обычной температуре Галлий стоек. Выше 260°С в сухом кислороде наблюдается медленное окисление (плёнка окиси защищает металл). В серной и соляной кислотах галлий растворяется медленно, в плавиковой — быстро, в азотной кислоте на холоду Галлий устойчив. В горячих растворах щелочей Галлий медленно растворяется. Хлор и бром реагируют с Галлий на холоду, иод — при нагревании. Расплавленный Галлий при температурах выше 300° С взаимодействует со всеми конструкционными металлами и сплавами Отличительная особенность Галлий — большой интервал жидкого состояния (2200° С) и низкое давление пара при температурах до 1100—1200°С.. Геохимия Галлий тесно связана с геохимией алюминия, что обусловлено сходством их физико-химических свойств. Основная часть Галлий в литосфере заключена в минералах алюминия. Содержание Галлий в бокситах и нефелинах колеблется от 0,002 до 0,01%. Повышенные концентрации Галлий наблюдаются также в сфалеритах (0,01—0,02%), в каменных углях (вместе с германием), а также в некоторых железных рудах. Широкого промышленного применения Галлий пока не имеет. Потенциально возможные масштабы попутного получения Галлий в производстве алюминия до сих пор значительно превосходят спрос на металл.

Наиболее перспективно применение Галлий в виде химических соединений типа GaAs, GaP, GaSb, обладающих полупроводниковыми свойствами. Они могут применяться в высокотемпературных выпрямителях и транзисторах, солнечных батареях и др. приборах, где может быть использован фотоэффект в запирающем слое, а также в приёмниках инфракрасного излучения. Галлий можно использовать для изготовления оптических зеркал, отличающихся высокой отражательной способностью. Сплав алюминия с Галлий предложен вместо ртути в качестве катода ламп ультрафиолетового излучения, применяемых в медицине. Жидкий Галлий и его сплавы предложено использовать для изготовления высокотемпературных термометров (600—1300° С) и манометров. Представляет интерес применение Галлий и его сплавов в качестве жидкого теплоносителя в энергетических ядерных реакторах (этому мешает активное взаимодействие Галлий при рабочих температурах с конструкционными материалами; эвтектический сплав Ga—Zn—Sn оказывает меньшее коррозионное действие, чем чистый Галлий).

В 1879 году шведский химик Ларс Нильсон открыл скандий, предсказанный Менделеевым как экабор Eb. Нильсон писал: "Не остается никакого сомнения, что в скандии открыт экабор... Так подтверждаются нагляднейшим образом соображения русского химика, которые не только дали возможность предсказать существование скандия и галлия, но и предвидеть заранее их важнейшие свойства"[4]. Скандий получил название в честь родины Нильсона Скандинавии, а открыл он его в сложном минерале гадолините, имеющем состав Be2(Y, Sc)2FeO2(SiO4)2. Среднее содержание Скандий в земной коре (кларк) 2,2- 10-3% по массе. В горных породах содержание Скандий различно: в ультраосновных 5-10-4, в основных 2,4-10-3, в средних 2,5-10-4, в гранитах и сиенитах 3.10-4; в осадочных породах (1—1,3).10-4. Скандий концентрируется в земной коре в результате магматических, гидротермальных и гипергенных (поверхностных) процессов. Известно два собственных минерала Скандий — тортвейтит и стерреттит; они встречаются чрезвычайно редко. Скандий — мягкий металл, в чистом состоянии легко поддаётся обработке — ковке, прокатке, штамповке. Масштабы применения Скандий весьма ограничены. Окись Скандий идёт на изготовление ферритов для элементов памяти быстродействующих вычислительных машин. Радиоактивный 46Sc используется в нейтронно-активационном анализе и в медицине. Сплавы Скандий, обладающие небольшой плотностью и высокой температурой плавления, перспективны как конструкционные материалы в ракетои самолётостроении, а ряд соединений Скандий может найти применение при изготовлении люминофоров, оксидных катодов, в стекольном и керамических производствах, в химической промышленности (в качестве катализаторов) и в других областях. В 1886 году профессор Горной академии во Фрайбурге немецкий химик Клеменс Винклер при анализе редкого минерала аргиродита состава Ag8GeS6 обнаружил еще один элемент, предсказанный Менделеевым. Винклер назвал открытый им элемент германием Ge в честь своей родины, но это почему-то вызвало резкие возражения со стороны некоторых химиков. Они стали обвинять Винклера в национализме, в присвоении открытия, которое сделал Менделеев, уже давший элементу имя "экасилиций" и символ Es. Обескураженный Винклер обратился за советом к самому Дмитрию Ивановичу. Тот объяснил, что именно первооткрыватель нового элемента должен дать ему название. Общее содержание Германий в земной коре 7.10—4% по массе, т. е. больше, чем, например, сурьмы, серебра, висмута. Однако собственные минералы Германий встречаются исключительно редко. Почти все они представляют собой сульфосоли: германит Cu2 (Cu, Fe, Ge, Zn)2 (S, As)4, аргиродит Ag8GeS6, конфильдит Ag8(Sn, Ce) S6 и др. Основная масса Германий рассеяна в земной коре в большом числе горных пород и минералов: в сульфидных рудах цветных металлов, в железных рудах, в некоторых окисных минералах (хромите, магнетите, рутиле и др.), в гранитах, диабазах и базальтах. Кроме того, Германий присутствует почти во всех силикатах, в некоторых месторождениях каменного угля и нефти. Германий — один из наиболее ценных материалов в современной полупроводниковой технике. Он используется для изготовления диодов, триодов, кристаллических детекторов и силовых выпрямителей. Монокристаллический Германий применяется также в дозиметрических приборах и приборах, измеряющих напряжённость постоянных и переменных магнитных полей. Важной областью применения Германий является инфракрасная техника, в частности производство детекторов инфракрасного излучения, работающих в области 8—14 мк. Перспективны для практического использования многие сплавы, в состав которых входят Германий, стекла на основе GeO2 и др. соединения Германий.

Предугадать существование группы благородных газов Менделеев не мог, и им поначалу не нашлось места в Периодической системе.

Открытие аргона Ar английскими учеными У. Рамзаем и Дж. Релеем в 1894 году сразу же вызвало бурные дискуссии и сомнения в Периодическом законе и Периодической системе элементов. Менделеев вначале посчитал аргон аллотропной модификацией азота и только в 1900 году под давлением непреложных фактов согласился с присутствием в Периодической системе "нулевой" группы химических элементов, которую заняли другие благородные газы, открытые вслед за аргоном. Теперь эта группа известна под номером VIIIА.

В 1905 году Менделеев написал: "По-видимому, периодическому закону будущее не грозит разрушением, а только надстройки и развитие обещает, хотя как русского меня хотели затереть, особенно немцы"[5].

Открытие Периодического закона ускорило развитие химии и открытие новых химических элементов.

3. Д.И.Менделеев и таможенная политика России.

Менделеев сыграл выдающуюся роль в формировании и осуществлении таможенно-тарифной политики России в конце XIX-начале XX в. - тогда уже авторитетнейший ученый с масштабным патриотическим мышлением. Доказывая историческую необходимость индустриализации в России, Менделеев указывает на таможенный тариф как на одну из мер поддержки отечественной промышленности. Дмитрий Иванович, по образному выражению одного из биографов ученого, "все время держал ногу в экономическом стремени", и когда в конце 1880-х годов настало время разработки таможенного тарифа, святая святых экономической политики любого государства, он сразу был готов приступить к этой грандиозной работе. О начале своего непосредственного участия в работе по пересмотру тарифа Менделеев вспоминал так:

"В сентябре 1889 г. заехал, по-товарищески, к И.А. Вышнеградскому, тогда министру финансов, чтобы поговорить по нефтяным делам, а он предложил мне заняться таможенным тарифом по химическим продуктам"[6]. Как указывал сам ученый, ему был поручен «разбор материалов, подготовленных для предстоящего пересмотра общего таможенного тарифа». Ознакомившись с указанными материалами,