Шкала дисперсности.
Удельная поверхность. Степень дисперсности. Классификация
дисперсных систем. Понятия: дисперсная фаза и дисперсионная
среда. Методы получения дисперсных систем
Дисперсной называют систему, в которой одно вещество распределено в среде другого, причем между частицами и дисперсионной средой есть граница раздела фаз. Дисперсные системы состоят из дисперсной фазы и дисперсионной среды.
Дисперсная фаза - это частицы, распределенные в среде. Ее признаки: дисперсность и прерывистость (рис. 1.1.1.1).
Дисперсионная среда - материальная среда, в которой находится дисперсная фаза. Ее признак - непрерывность.
Поверхность раздела фаз характеризуется раздробленностью и гетерогенностью. Раздробленность характеризуется:
1) степенью дисперсности:
, [см-1; м-1], где S - суммарная межфазная поверхность или поверхность всех частиц дисперсной фазы; V - объем частиц дисперсной фазы.2) дисперсностью - величиной, обратной минимальному размеру:
[
; ];3)удельной поверхностью:
, [м2/кг; см2/г]; где m - масса частиц дисперсной фазы.4) кривизной поверхности:
. Для частицы неправильной формы ,где r1 и r2 - радиусы окружностей при прохождении через поверхность и нормаль к ней в данной точке двух перпендикулярных плоскостей.
5) размером тела по трем осям, причем определяющим является размер по той оси, где он минимальный. В зависимости от размеров частиц они имеют свои исторические названия (см. рис. 1.1.1.1).
Классификация дисперсных систем осуществляется по нескольким признакам (рис. 1.1.1.2).
1. По дисперсности различают:
а) грубодисперсные системы, для них D< 103 [1/см] (рис. 1.1.1.3);
б) микрогетерогенные системы, для них D = 103 - 105 [1/см];
в) ультрамикрогетерогенные системы, для них D = 105 - 107 [1/см].
2. По агрегатному состоянию дисперсной фазы и дисперсионной среды. Эта классификация была предложена Оствальдом (см. табл. 1.1.1.1).
3. По структуре дисперсные системы различают:
1) свободные дисперсные системы, когда частицы обеих составляющих системы могут свободно перемещаться друг относительно друга (золь);
2) связанные дисперсные системы, когда одна из составляющих системы представляет собой структурированную систему, т.е. частицы фазы жестко связаны между собой (студень, композиты).
Таблица 1.1.1.1
Классификация по агрегатному состоянию фаз
Агрегатное состояние дисперсной фазы | Агрегатное состояние дисперсион-ной среды | Условное обозначение фаза/среда | Название системы | Примеры |
г | г | г/гж/гтв/г | Аэрозоли | атмосфера Земли |
ж | г | туман, слоистые облака | ||
тв | г | дымы, пыли, перистые облака | ||
г | ж | г/ж | Газовые эму-льсии, пены | газированная вода, мыльная и пивная пены |
ж | ж | ж/ж | Эмульсии | молоко, масло сливочное, кремы и т.д. |
тв | ж | тв/ж | Лиозоли, суспензии | лиофобные коллоидные растворы, суспензии, пасты, краски и т.д. |
г | тв | г/тв | Твердые пены | пемза, пенопласт, активированный уголь, хлеб, пенобетон и т.д. |
ж | тв | ж/тв | Твердые эмульсии | вода в парафине, минералы с жидкими включениями, пористые тела в жидкости |
тв | тв | тв/тв | Твердые золи | сталь, чугун, цветные стекла, драгоценные камни |
4. По межфазному взаимодействию - лиофильные и лиофобные системы (предложено Г. Фрейндлихом). Классификация пригодна только для систем с жидкой дисперсионной средой.
Лиофильные системы – в них дисперсная фаза взаимодействует с дисперсионной средой и при определенных условиях способна в ней растворяться – растворы коллоидных ПАВ, растворы ВМС. Свободная энергия системы DF < 0.
DF = DU – TdS;DSсмешения > 0;
DU = Wког - Wсольв,
где Wког - работа когезии;
Wсольв - работа сольватации.
При DU > 0, DU < 0 ÞTdS >DU. Эта группа характеризуется малым значением поверхностного натяжения на границе раздела фаз.
Лиофобные системы – в них дисперсная фаза не способна взаимодействовать с дисперсионной средой и растворяться в ней. Для них DF > 0. Диспергирование в этом случае совершается либо за счет внешней работы, либо за счет других процессов, идущих в системе спонтанно (химическая реакция) и характеризуется высоким значением поверхностного натяжения на границе раздела фаз, что соответствует малому значению энергии сольватации.
Существует две группы способов получения дисперсных систем:
1. Способы диспергирования заключаются в раздроблении тела до коллоидного состояния (мукомольное производство).
2. Способы конденсации заключаются в укрупнении частиц, атомов, молекул до частиц коллоидных размеров (химическая реакция с образованием осадка).
Молекулярно-кинетические свойства дисперсных систем
Все молекулярно-кинетические свойства вызваны хаотическим тепловым движением молекул дисперсионной среды, которое складывается из поступательного, вращательного и колебательного движения молекул.
Молекулы жидкой и газообразной дисперсионной среды находятся в постоянном движении и сталкиваются между собой. Среднее расстояние, проходимое молекулой до столкновения с соседней, называют средней длиной свободного пробега. Молекулы обладают различной кинетической энергией. При данной температуре среднее значение кинетической энергии молекул остается постоянным, составляя для одной молекулы и одного моля:
; ,где m – масса одной молекулы;
M – масса одного моля;
v – скорость движения молекул;
k – константа Больцмана;
R – универсальная газовая постоянная.
Флуктуация значений кинетической энергии молекул дисперсионной среды (т.е. отклонение от среднего) и является причиной молекулярно-кинетических свойств.
Изучение молекулярно-кинетических свойств возможно в результате применения статистических методов исследования, действительных для систем, состоящих из множества элементов (молекул). Исходя из допущения о беспорядочности движения отдельных молекул, теория определяет наиболее вероятное сочетание для систем из множества объектов. Молекулярно-кинетические свойства проявляются в жидкой и газообразной среде, молекулы которых обладают определенно подвижностью.
Броуновское движение
Броуновским называют непрерывное, хаотическое, равновероятное для всех направлений движение мелких частиц, взвешенных в жидкостях или газах, за счет воздействия молекул дисперсионной среды.
Мельчайшие частицы незначительной массы испытывают неодинаковые удары со стороны молекул дисперсионной среды, возникает сила, движущая частицу, направление и импульс силы, непрерывно меняются, поэтому частица совершает хаотические движения.
Определили эти изменения и связали их с молекулярно-кинетическими свойствами среды в 1907 году А. Эйнштейн и М. Смолуховский. В основе расчета – не истинный путь частицы дисперсной фазы, а сдвиг частиц. Если путь частицы определяется ломаной линией, то сдвиг х характеризует изменение координат частицы за определенный отрезок времени. Средний сдвиг определяет среднеквадратичное смещение частицы:
,где х1, х2, хi– сдвиг частиц за определенное время.
Теория броуновского движения исходит из представления о взаимодействии случайной силы f(t), характеризующей удары молекул, силы Ft, зависящей от времени, и силы трения при движении частиц дисперсной фазы в дисперсионной среде со скоростью v. Уравнение броуровского движения (уравнение Ланжевена) имеет вид:
, где m – масса частицы; h - коэффициент вязкости дисперсионной среды. Для больших промежутков времени (t>>m/h) инерцией частиц (m(dv/dt) можно пренебречь. После интегрирования уравнения при условии, что среднее произведение импульсов случайной силы равно нулю, среднее значение флуктуации (средний сдвиг) равно: , где t - время; r – радиус частиц дисперсной фазы; NA – число Авогадро частиц.