При взрывном горении продукты горения нагреваются до 1,5–3 тысячи °С, а давление в закрытых системах увеличивается до 0,5–0,9 МПа. Продолжительность реакции горения до взрывного режима составляет примерно для газов ~0,1 сек, паров ~0,2–0,3 сек, пыли ~0,5 сек. Применительно к случайным промышленным взрывам под дефлебрацией обычно понимают горение облака с видимой скоростью порядка 100 – 300 м/сек, при которой генерируются ударные волны с максимальным давлением 20–100 кПа.
В определенных условиях взрывное горение может перейти в детонационный процесс, при котором скорость распространения пламени превышает скорость распространения звука и достигает 1–5 км/сек. Это происходит при сильной турбулизации материальных потоков, вызывающей значительное искривление фронта пламени большое увеличение его поверхности.
При этом возникает ударная волна, во фронте которой резко повышается плотность, давление температура смеси. При возрастании этих параметров смеси до самовоспламенения горячих веществ возникает детонационная волна, являющаяся результатом сложения ударной волны и образующейся зоны сжатой быстрореагирующей (самовоспламеняющейся) смеси. Избыточное давление в пределах детонирующего облака смеси может достигать 2 МПа или 20 атмосфер.
Процесс химического превращения горючих веществ, который вводится ударной волной и сопровождается быстрым выделением энергии, называется детонацией. При детонационном режиме горения облака ГВ большая часть энергии взрыва переходит в воздушную ударную волну, при дефлеграционном горении со скоростью распространения пламени ~200 м/сек переход энергии в волну составляет от 30 до 40%.
2. Секреты пламени
2.1 Цвет пламени
По цвету пламени можно кое-что сказать об элементах, попадающих очаг горения. Для того, чтобы пламя изменило свой цвет, необходимо, чтобы атомы вещества отделялись от поверхности предмета и уносились с пламенем. У некоторых (особенно щелочных металлов), отделение атомов от основного материала происходит самостоятельно, что приводит к заметному окрасу. У некоторых элементов отделение атомов происходит с трудом, и для катализации процесса, требуется воздействие различных кислот. Цвета окраса пламени, характерные для различных элементов приведены в таблице.
Цвет пламени | Эле-мент | Название элемента | Примечание |
Светло-зеленый | Sb | Сурьма | |
Зеленый | Tl | Таллий | |
Зеленый | Cu | Медь | (после смачивания в HNO3) |
Фосфор | P | Густо-зеленый | |
сине-зеленый | B | Бор | |
сине-зеленый | Te | Теллур | |
желто-зеленый | Ba | Барий | |
желто-зеленый | Mo | Молибден | |
Интенсивно-желтая | Na | Натрий | |
Оранжевый | Ca | Кальций | От оранжевого до кирпично-красного |
Оранжевый | СО | Угарный газ!!! | Какую бы железяку или вообще не металл вы не поместите в пламя, прыгающий оранжевый цвет свидетельствует о недостатке кислорода и образовании угарного газа! |
Карминово-красный | Li | Литий | |
Карминово-красный | Sr | Стронций | |
Синий | As | Мышьяк | |
Голубой | Cu | медь | После смачивания в HCl |
Фиолетовый | K | Калий | При наблюдении через фиолетовое стекло |
Проблемы с идентификацией вещества возникают тогда, когда в пламя попадает сразу несколько элементов. В этом случае или разные стороны пламени неравномерно окрашиваются в различные цвета, или окраска пламени определяется лишь доминирующим компонентом. По этому, для определения в пламени отдельных цветов используют светофильтры. Для калия этим фильтром является фиолетовое стекло.
Таблица спектральных линий некоторых элементов. Длина волны нейтральных атомов и их ионов указаны в нанометрах.
Элемент | Нейтральный атом | Ион |
Al | 396.1 | 266.9 |
Ba | 553.5 | 455.4 |
Bi | 306.7 | 282.0 |
Ca | 422.6 | 393.3 |
Co | 345.3 | 228.6 |
Cu | 324.7 | 213.6 |
Fe | 371.9 | 238.2 |
K | – | 766.4 |
Na | – | 589.0 |
Sm | – | 442.4 |
Sr | 460.7 | 407.7 |
2.2 Электрические свойства пламени
Наглядно иллюстрирует общую сложность процессов тот факт, что пламя обладает значительными электрическими свойствами. Экспериментально установлено, что в пламени существует разделение зарядов, причём положительный объёмный заряд сосредоточен в реакционной зоне (во фронте пламени), а отрицательный – в предпламенной зоне. Предполагается, что разделение зарядов обусловлено амбиполярной диффузией. Носителями отрицательного заряда в пламени являются электроны и отрицательные ионы.
По имеющимся данным, образование ионов происходит как при термическом распаде веществ, так и в результате химических реакций. Предполагается так же, что незначительный вклад (доли процентов) в образование ионов могут вносить мелкие углеродистые частицы, обладающие работой выхода 4,35 кВ.
Так, ещё в 1909 г. Ф. Габер предположил, что ионы в пламени образуются в результате химической ионизации в реакции с участием радикалов С2, СН, ОН. В зависимости от условий горения и вида топлива, концентрация ионов в пламени составляет около 1010-1012 см-3, т.е. на 4–6 порядков превышает концентрацию, которая должна была бы наблюдаться при чисто термическом механизме ионизации.
Максимум ионизации соответствует фронту пламени, где протекают химические процессы, причём концентрация заряженных частиц резко падает по выходе в зону продуктов сгорания, хотя в этой зоне и наблюдается максимальная температура. Соотношение концентрации ионов в этих зонах оценивают как 1000:1.
При механизме хемиоионизации частицы претерпевают химическую перегруппировку, при которой освобождается количество энергии, достаточное для ионизации одного из продуктов реакции. Предполагается, что в случае пламени такой процесс идёт как побочная реакция между частицами, участвующими в основной реакции горения. Имеется довольно большое число возможных с энергетической точки зрения реакций, в которых участвуют две частицы в основном состоянии или одна в основном, а другая – в возбуждённом состоянии. Поэтому предполагается, что хемоионизация, независимо от того, сопровождается она образованием возбуждённых частиц или нет, является наиболее вероятным источником ионизации пламени.
Энгель и Козенс считали, что при столкновении с колебательно-возбуждёнными частицами электроны свободно могут получить дополнительную энергию. Было рассчитано, что в результате баланса между энергией, полученной от возбуждённых частиц, и энергий, потерянных при упругих столкновениях, средние энергии электронов в пламенях могут лежать в интервале 0,2-1,2 эВ (температура 2320–11600 К).
Многие эксперименты с электростатическими зондами показывают, что в некоторых пламенях существуют повышенные электронные температуры. Так, например, в недавней работе Брэдли и Меттьюса, в которой использовались двойные зонды при пониженных давлениях, были обнаружены температуры до 30000 К. Электроны, обладающие энергией, немного превышающей потенциал ионизации, способны легко ионизировать атомы и молекулы. Именно эти электроны являются источником ионизации в пламенях, где обнаружены повышенные электронные температуры.
Логично предположить, что электроны при температурах порядка 30000 К вызовут ионизацию с большими скоростями. Недавняя работа показала, что в пламенях происходит не только хемоионизация, но и образует значительное количество ионов О2+, которые могут возникать в присутствии электронов при повышенных температурах. Предполагается, что последние появляются в результате взаимодействия с возбуждёнными молекулами СО2, которые в свою очередь образуют при рекомбинации молекул окиси углерода с атомарным кислородом.
Однако повышенные электронные температуры были обнаружены не во всех пламенях с повышенной степенью ионизации. Более того, при изменении скорости ионообразования были получены плоские плато, соответствующие току насыщения, при атмосферном давлении в широком интервале приложенных напряжений. При этом напряжённость поля в зоне горения имела порядок кВ/см и, таким образом, была достаточна для значительного повышения электронной температуры. Это приводит к выводу, что в различных пламенях могут играть важную роль различные механизмы ионообразования. Выяснение роли электронов повышенной энергии как одного из возможных источников ионизации требуется дальнейшего излучения.
Были предложены два механизма, благоприятные с термохимической точки зрения:
СН+О
СНО++е-,и
СН (А2Δ) +С2Н2
С3Н3++е-.Таким образом, представленный выше текст показывает, что в процессе горения происходит относительно неоднородный распад молекул, образование ионов и свободных радикалов. Потому, многие молекулы, избежавшие полного окисления, могут быть трансформированы при столкновении со свободными радикалами, в результате в ничтожных дозах образуются множества веществ, изначально не входящие в состав горючего.
3. Конвекция над пламенем
Рисунок 1. 1 – окислительное пламя; 2 – восстановительное; 3 – снова окислительное; 4 – наиболее близкий к пламени горячий (100–150°С и более) поток воздуха; 5 – вторичный воздушный поток с относительно малыми (50–100°С) температурами