В связи с этим становится понятным, почему не всегда удается наблюдать явление антипластификации в полярных полимерах, в которые вводятся совместимые с ними (часто весьма ограниченно) полярные пластификаторы. Очевидно, в последнем случае содержание пластификатора превышает предел совместимости для данной системы, и пластификатор, образуя мономолекулярные слои, расположенные между полимерными цепями, вплоть до очень низких температур может находиться в состоянии, типичном для переохлажденной жидкости. Это, естественно, должно приводить к снижению модуля упругости в системе полимер — пластификатор.
Интересно, что после удаления влаги (в наших экспериментах это происходило при выдерживании образцов при 373 К в вакууме в течение 24 ч) вязкоупругие свойства набухшего образца практически не отличались от свойств исходного высушенного композита. Единственное, что заслуживало внимание при этом — некоторое возрастание температуры стеклования. Температура стеклования, найденная по изменению температурного коэффициента низкочастотной скорости сдвиговых волн, у набухшего, а затем высушенного образца составляла 335 К, в то время как у исходного образца 7,с=324 К. Интересно отметить, что у образцов композита, в который не вводили влагу, но подвергали такой же термообработке, как и набухший образец, 77с=326 К. Таким образом, изменение Тсна 11 К нельзя объяснить просто нагревом образца в вакууме. Это обусловлено влиянием влаги. Следовательно, влага концентрируется в основном не в крупных пустотах и раковинах, а в микропорах, монослоях и приводит к более упорядоченному расположению крупных фрагментов полимерных цепей или к их более плотной упаковке.
Следует заметить, что в набухших образцах композита на высокотемпературной ветви главного релаксационного максимума был обнаружен более слабый пик механических потерь, который в образце, содержащем 8% влаги, был расположен при 393, а в образце, содержащем 20,6% воды, при 378 К. Так как главный релаксационный максимум в хорошо высушенном образце наблюдался при 337 К, имеются все основания полагать, что более высокотемпературный fi-пик обусловлен «размораживанием» сегментального движения в областях, состоящих из крупных фрагментов цепей эпоксидной смолы и связанных с ними водородными связями молекул воды, расположенных между соседними сегментами полимерных цепей. Естественно, что такая «связанная» вода будет выкипать и испаряться при более высокой температуре, чем вода, заключенная в большой объем. С ростом концентрации влаги в композите увеличивается число таких областей, а следовательно, возрастает высота пика потерь. В то же время положение пика смещается в сторону низких температур, так как при большом содержании влаги все большую роль будут играть более крупные кластеры воды, которые будут разрушаться, освобождая молекулы воды, при температурах, близких к температуре кипения воды, находящейся в свободном состоянии.
Так как в данной работе влага вводилась в полимерный композит, то нами были изучены динамические механические свойства армирующего высокомодульного наполнителя тем же методом. В чистом высокомодульном волокне, которое служило наполнителем, обнаружены пики механических потерь при 253 К (ему соответствует высокотемпературная ветвь fi-пика в композите), а также при 533 и 813 К (интенсивные пики). Последние два пика лежат вдали от интересовавшей нас области температур.
Нами были изучены вязкоупругие свойства эпоксидной смолы, которая выполняла функции связующего в исследованном композите. Оказалось, что основные эффекты, обнаруженные в композите, имеют место и в эпоксидном связующем, содержащем влагу.
ЛИТЕРАТУРА
1. Машинская Г. П. В кн.: Пластики конструкционного назначения. М.: Химия, 1974, с. 266.
2. Перепечко И. И. Акустические методы исследования полимеров. М.: Химия, 1973, с. 295.
3. Перепечко И. И., Трепелкова Л. И., Бодрова Л. А., Бунина Л, О. Высокомолек. соед. Б, 1968, т. 10, № 7, с. 507.
4. BacareddaМ., ButtaЕ., FrosiniV., DePetrisS. J. PolymerSci. A-2, 1967, v. 5, № 6, p. 1296.
5. Роусон Т. Неорганические стеклообразующие системы / Под ред. Танаева И. В. М.: Мир, 1970, с. 312.
6. TrinaЕ., ApfelR. Е. J. Chem. Phys., 1980, v. 72, № 12, с. 6731.
7. Кикоин И. К. Таблицы физических величин. Справочник. М.: Атомиздат, 1976, с. 1008.
8. Judd N. С. W. Brit. Polymer J., 1977, v. 9, № 1, p. 36.
9. Попов К. П., Артамонова Р. В., Чуваев В. Ф., Королев А. Я. Коллоидн. ж., 1978, т. 40, Я» 6, с. 1199.