Окреме місце займають оксиди берилію та магнію. Оксид ВеО не розчиняється у воді і виявляє амфотерні властивості, тобто реагує не тільки з кислотами, але й з лугами:
BeO + 2HCl-BeCl2 + H2O,
BeО + 2NaOH (р-н) + 2H2O-Na2 [Be (OH) 4],
BeO + 2NaOH (to, сплавлення) -Na2BeO2 + H2О.
Оксид магнію відносно до води та інших реагентів теж поводить себе неоднозначно: дрібнокристалічний MgO є хімічно активним: помірно розчиняється у воді, поглинає СО2 та інші кислотні оксиди, легко взаємодіє з кислотами:
MgO + H2O - Mg (OH) 2,MgO + CO2- MgCO3,MgO + H2SO4- MgSO4 + H2O.
Однак прокалений MgO стає твердим і втрачає хімічну активність.
Добувають оксиди металів ІІА-підгрупи не прямою взаємодіює з киснем, оскільки це був би дуже дорогий спосіб, а при розкладанні солей, найчастіше - карбонатів. Однак розкладання карбонату барію проходить при високій температурі (1625оС), тому для добування ВаО розкладають нітратну сіль:
MgCO3- MgO + CO2,CaCO3- CaO + CO2,4Ba (NO3) 2- 2BaO + 4NO2 + O2.
Магній та елементи підгрупи кальцію утворюють пероксиди МеО2 і супероксиди (надпероксиди) МеО4. Пероксиди - білі тверді речовини, які можна вважати солями Гідроген пероксиду, тому у присутності води вони піддаються необоротному гідролізу:
СaО2 + 2H2O - Ca (OH) 2 + H2O2.
Стійкість пероксидів зростає у ряді:
BeO2<MgO2<CaO2<SrO2<BaO2.
Пероксид барію використовується для одержання Гідроген пероксиду:
BaO2+ 2H2O - Ba (OH) 2 + H2O2,BaO2+ H2SO4- BaSO4↓+ H2O2.
Cупероксиди - речовини жовтого кольору, менш стійкі, ніж пероксиди, утворюються як побічний продукт при добуванні пероксидів.
Гідридиs-металів ІІ групи - тверді речовини, в яких атоми Гідрогену перебувають у ступені окиснення -1. При безпосередній взаємодії з воднем вдається одержати тільки гідриди лужноземельних металів, а BeH2 і MgH2 утворюються через обмінні реакції з гідридом літію в етерних розчинах, наприклад:
2LiH + BeCl2-BeH2 + 2LiCl.
Гідрид берилію - типово ковалентна сполука, яка нагадує за властивостями AlH3, у MgH2 більш чітко виявляється йонний зв’язок, а в гідридах лужноземельних металів йонний зв’язок переважає. Всі гідриди є сильними відновниками, при розчиненні у воді вони розкладаються з виділенням водню:
MeH2 + 2H2O - Mе (OH) 2 + H2.
Гідроксидиs-металів ІІ групи складу Ме (ОН) 2 - білі кристалічні речовини. Для деяких з них застосовуються тривіальні назви: Сa (OH) 2 - гашене вапно, або вапняне молоко, Ba (OH) 2 - баритова вода.
Розчинність гідроксидів збільшується по підгрупі згори вниз: Be (OH) 2, Mg (OH) 2 і навіть Ca (OH) 2 належать до малорозчинних сполук, розчинність Sr (OH) 2 і Ba (OH) 2 дещо краща. Сила основ теж зростає по підгрупі: Ве (ОН) 2 - слабка амфотерна основа, Mg (OH) 2 -основа середньої сили, а решта гідроксидів вважаються сильними основами - лугами.
Для всіх гідроксидів, крім Ве (ОН) 2, характерні типові основні властивості: взаємодія з кислотами, кислотними оксидами, кислими, основними і нормальними солями, з деякими неметалами подібно до лугів s-металів І групи. Наприклад:
Ca (OH) 2 + 2HNO3-Ca (NO3) 2 + 2H2O, Ca (OH) 2 + CO2-CaCO3↓ + H2O, Ca (OH) 2 + 2NaHCO3-CaCO3↓+ Na2CO3 + 2H2O, Ba (OH) 2 + FeOHCl2-BaCl2 + Fe (OH) 3↓, Ba (OH) 2 + Na2SO4-BaSO4↓ + 2NaOH, 2Ca (OH) 2 + Cl2-CaCl2 + Ca (ClO) 2 + 2H2O.
Щодо гідроксиду берилію, то його амфотерний характер можна виразити рівняннями реакцій як з кислотами, так і з лугами:
Be (OH) 2 + H2SO4-BeSO4 + 2H2O,
Be (ОH) 2 + 2KOH (р-н) -Na2 [Be (OH) 4],
Be (OH) 2 + 2NaOH (to, сплавлення) -Na2BeO2 + H2О.
Солі s-металів ІІ групи в основному - білі кристалічні речовини. Якщо солі мають інше забарвлення - це наслідок впливу аніона, наприклад, сіль Барій хромат BaCrO4 зобов’язана своїм яскраво жовтим кольором наявності хромат-аніона CrO42-. Розчинність солей (сульфатів, хлоридів, карбонатів) зменшується по групі згори вниз (рис.2).
Рисунок 2 - Розчинність солей Са, Sr, Ва у воді (моль/лН2О)
Це пояснюється зменшенням енергії гідратації йонів Ме2+ і збільшенням міцності кристалічної решітки. У такій самій закономірності зростає і термічна стійкість солей.
Солі, утворені лужними металами і аніонами сильних кислот, у воді не гідролізуються, а берилієві та магнієві солі таких кислот у розведених розчинах піддаються гідролізу, даючи кислу реакцію середовища, в яких рН<7, наприклад:
Mg (NO3) 2 + H2O ↔ (MgOH) NO3 + HNO3,Mg2+ H2O↔ MgOH+ + H+.
Галіди (або галогеніди) мають загальну формулу МеHal2, де Hal - F, Cl, Br, I. Це білі кристалічні сполуки, які одержують при безпосередній взаємодії елементів чи хлоруванням оксидів за наявності розжареного вугілля:
MgO + Cl2 + C - MgCl2 + CO.
Деякі галіди (MgCl2·6H2O) добувають з морської води при її випаровуванні.
Фториди різко відрізняються від інших галідів своєю малою розчинністю, наприклад, плавиковий шпатCaF2 має добуток розчинності усього ДР =10-11, що пояснюється дуже малими розмірами аніона F - порівняно з катіоном Ме2+. Інші галіди добре розчинні у воді (так, у 100г води при кімнатній температурі розчиняється близько 130г СаCl2). При випаровуванні вони виділяються з розчинів у формі кристалогідратів (наприклад, MgCl2·6H2O), які при нагріванні поводять себе по-різному:
BaCl2·2H2O - BaCl2 + 2H2O,
CaCl2·6H2O - BaCl2 + 6H2O,
MgCl2·6H2O - MgO + 2HCl + 5H2O.
Завдяки схильності утворювати кристалогідрати галогеніди є дуже гігроскопічними, на повітрі вони розпливаються, витягуючи атмосферну вологість.
Нітрати у кристалічному стані теж існують у формі кристалогідратів, крім нітрату барію, який частіше утворюється безводним, але можна виділити і кристалогідрати Ba (NO3) 2·nH2O (де n=2,4). За високих температур нітрати розкладаються за схемою:
2Ме (NO3) 2 - 2MeO + 4NO2 + O2.
CульфатиMeSO4- білі кристалічні речовини, розчинність яких зменшується у міру зростання порядкового номера металу. BeSO4 і MgSO4 добре розчиняються у воді, а розчинність СаSO4, SrSO4 і BаSO4 на 100г води становить відповідно 0, 202г; 0,014г; 0,0002г. Сульфати SrSO4 і BaSO4 кристалізуються без кристалізаційної води, а сульфати кальцію і магнію - у формі кристалогідратів СаSO4·2H2O і MgSO4·7H2O. Останню формулу іноді записують у вигляді комплексної сполуки, яка містить у зовнішній сфері тільку одну молекулу води: [Mg (H2O) 6] SO4·H2O.
Карбонати МеСО3 - білі кристалічні речовини, важкорозчинні у воді, причому розчинність, як і у сульфатів, зменшується по підгрупі згори вниз. Розчинити карбонат металу ІІА-підгрупи вдається тільки хімічним шляхом, пропускаючи вуглекислий газ через їх завіси (взбовтані у воді роздрібнені частинки кристалічного осаду), чи, використовуючи амоній хлорид:
MgCO3 (кр) + CO2 + H2O-Mg (HCO3) 2 (р),
CaCO3 (кр) + 2NH4Cl-CaCl2 (р) + 2NH3 + H2O + CO2.
IIА-ПІДГРУПИ ТА ЇХ СПОЛУК
Берилій використовують для виготовлення інтерметалічних сполук - берилідів складу МеВе12 (де Ме - Ti, Nb, Ta, Mo) чи MeBe11 (де Me- Nb, Ta), які мають високу температуру плавлення і не окиснюються навіть при нагріванні до 1200-1600оС. Крім того, берилій застосовують як легуючий компонент у багатьох сплавах, який надає їм підвищену корозійну стійкість, велику міцність і твердість. Найціннішими сплавами є берилієві бронзи, які використовують у літакобудівництві, електротехніці тощо. В атомних реакторах берилій і оксид берилію ВеО використовують як сповільнювачі і відбивачі (ОТРАЖАТЕЛИ) нейтронів. У суміші з препаратами радію Ве є джерелом нейтронів, що утворюються при дії альфа-частинок:
94Be + 42He-126C + 10n.
Оксид берилію застосовують як хімічно стійкий вогнестікий матеріал для виготовлення тиглів і спеціальної кераміки, ВеО входить до складу деяких склоутворюючих сумішей. Сполуки берилію отруйні!
Магній в основному використовується для виробництва "надлегких" сплавів (таких як дюралімін, електрон, магналій, гідроналій, необхідних у машинобудівництві та авіації); в металургії - як розкислювач і десульфуючий агент, оскільки він відновлює оксиди і сульфіди з утворенням важкорозчинних у розплавлених металах сполук; у металотермії - для виробництва Ti, Zr, V, U та ін. Суміші порошку магнію з окисниками використовують для освітлювальних і запалювальних ракет, снарядів, у фото - і освітлювальній техніці.
Оксид магнію, або палену магнезію MgO застосовують при виробництві чистого магнію як наповнювач гуми для очищення нафтопродуктів при виготовленні вогнестійкої цегли, будівельних матеріалів.
Хлорид магнію MgCl2 використовують для одержання чистого магнію, а також у великих кількостях для виробництва магнезіальногоцементу, який виробляють, змішуючи попередньо прожарений MgO з 30% розчином MgCl2. При поступовому висиханні утворюються полімерні ланцюги - біла тверда маса, стійка відносно до кислот і лугів.