Спин-орбитальный эффект приводит к тому, что термы Рассел-Саундерса расщепляются на несколько подуровней, каждый из которых характеризуется внутренним квантовым числом, принимающим значения
. Внутреннее квантовое число определяет модуль суммарного момента импульса электронной оболочки. Спин-орбитальный эффект возникает в том случае, когда оба из независимых моментов импульса электронной оболочки атома, орбитальный и спиновый не равны нулю. Если же хотя бы один из них равен нулю, то спин-орбитальный эффект не имеет места.Низший из атомных термов на шкале энергии (основной) определяется на основе трёх правил Хунда.
1-е правило Хунда: В пределах орбитальной конфигурации основной терм обладает максимальной мультиплетностью.
2-е правило Хунда: Если в пределах орбитальной конфигурации у нескольких термов мультиплетность одинакова, то у основного терма орбитальный момент наибольший и квантовое число L максимальное.
3-е правило Хунда: В пределах конфигурации у низшего терма внутреннее квантовое число J минимальное (нормальный терм), если оболочка атома заполнена менее, чем наполовину, и, число J максимальное при заполнении оболочки более, чем наполовину (обращённый терм).
Символы атомного терма Рассел-Саундерса, учитывающие спин-орбитальный эффект, записываются в виде
. Эти термы отражают схему последовательных приближений в учёте различных слагаемых полной энергии коллектива электронов в атомной оболочке.Резюме: Начальное приближение называют одноэлектронным приближением, а в теории атома его же называют принципом водородоподобия. В одноэлектронном (нулевом) приближении все электроны рассматриваются независимо. Энергия взаимного отталкивания электронов частично учитывается искусственным способом в виде эффекта экранирования ядра «внутренними» электронами.
Эффект экранирования положительно заряженного ядра отрицательно заряженным электронным облаком учитывается тем, что в формуле потенциальной энергии электростатического притяжения одиночного электрона к ядру заряд ядра уменьшается на некоторую функцию экранирования, зависящую и от заряда ядра и от совокупности квантовых чисел.
Полученный модифицированный кулоновский потенциал перестаёт быть простой радиальной функцией обратно пропорционального вида, как это имеет место у точечного заряда. Такой потенциал, введённый в уравнение Шрёдингера для единичного электрона, отдает расщепление вырожденного орбитального уровня. Энергия орбитального (одноэлектронного) уровня зависит уже не только от главного, но и от побочного квантового числа, становясь функцией двух дискретных параметров Enl.
Последовательность орбитальных уровней (уровней АО) удаётся выразить в достаточно универсальной форме в виде правила Клечковского-Маделунга. На этой стадии решение очень сложной многоэлектронной задачи заменено решением задачи о состояниях одного-единственного электрона, и его атомные орбитали рассматриваются как эталонные для всех электронов оболочки. В этом приближении энергетические схемы орбиталей отдельных электронов качественно идентичны, и друг от друга не отличаются. Поэтому для построения первичной схемы распределения электронов в оболочке по одноэлектронным состояниям используется один набор АО единственного электрона.
Нулевое приближение учитывает основную часть электростатической энергии кулоновского притяжения электронов к ядру. Согласно оценкам Томаса-Ферми эта энергия нулевого приближения составляет около 83-85% полной энергии атомной оболочки.
Полная энергия оболочки на этой стадии аддитивна и равна просто сумме одно электронных (орбитальных) энергий.
В первом приближении учитывается энергия межэлектронного электростатического отталкивания. Её основная часть может быть представлена в виде энергии отталкивания электронного облака, сформированного на заполненных атомных орбиталях.
В результате выявляется, что микросостояния, возникающие при размещении электронов на внешних заполненных орбиталях, разделяются на неравноценные группы. Их группировка основана на независимости в оболочке атома суммарных квантовых векторов моментов импульса орбитального
и спинового движений электронов.При объединении групп микросостояний по признакам этих моментов импульса, формируются термы. В пределах каждого терма квантовое число проекции каждого из независимых моментов ML и MS пробегает весь набор необходимых значений от максимального до минимального: MLmin
ML MLmax и MSmin MS MSmax, откуда для них определяются общие суммарные характеристики термаL = MLmax =| MLmin| иS= MSmax =| MSmin|
Терм оказывается одним из результирующих многоэлектронных уровней оболочки. Характеристиками такого уровня долны быть орбитальная электронная конфигурация и суммарные орбитальное и спиновое квантовые числа. В общем случае терм вырожден. Кратность вырождения это число микросостояний с равной энергией, объединённых в терм. На этой первой стадии приближения она определяется формулой (2L+1)´ (2S+1).
Во втором приближении учитываются энергетические поправки, появляющиеся за счёт спин-орбитального эффекта. Эти эффекты имеют релятивистское происхождение и формально связываются со взаимодействиями магнитных моментов орбитального и спинового происхождения. Эти поправки имеют второй порядок малости, и примерно на три порядка меньше энергии электронно-ядерных взаимодействий. Термы, порождаемые во втором приближении, также вырождены, и их кратность вырождения равна (2J+1).
Периодическая система Менделеева и некоторые свойства элементов. Содержание. Электронные конфигурации элементов. Правило Унзольда, устойчивость сферических оболочек. Кажущиеся "аномалии" основных конфигураций d-элементов I, VI, VIII групп Периодической системы. “Сферические" и "несферические" электронные конфигурации:
Также и в V периоде прослеживается «аномалия». На самом деле она ярко свидетельствует, что внешний валентный слой этих элементов образован электронами, заселяющими очень близкие уровни одноэлектронные уровни 4d+5s – АО...