Смекни!
smekni.com

Біологічна активність S-заміщених похідних 2-метил-4-меркапто-8-метоксихіноліну (стр. 2 из 5)

Публікації.За матеріалами дисертації опубліковано 11 праць, у тому числі 5 статтей у наукових фахових журналах і збірниках та у 6 тезах доповідей.

Структура й обсяг дисертації. Дисертаційна робота викладена на 165сторінках машинописного тексту, складається зі вступу, огляду літератури, матеріалів і методів досліджень, чотирьох розділів власних досліджень, висновків, списку використаних джерел (183 найменування) і містить 28 таблиць та 35 рисунків.

ОСНОВНИЙ ЗМІСТ РОБОТИ

Огляд літератури. В огляді літератури на основі даних про біологічну активність похідних хіноліну обґрунтована перспективність пошуку біологічно активних речовин у ряду S-заміщених 2-метил-4-меркапто-8-метоксихінолінів.

Матеріали та методи досліджень. Дослідження антирадикальної активності синтезованих сполук проводили на моделі аутоокиснення адреналіну (Ю.І. Губський і співавт., 2002).

Антиоксидантна активність (АОА) у дослідах in vitro вивчалася на моделях ініціації утворення вільних радикалів кисню та їх біологічної дії: інгібування супероксидрадикалу, ферментативне ініціювання (ФІ), неферментативне ініціювання (НФІ), утворення NO-радикалу (Ю.І. Губський і співавт., 2002).

Оцінку мембраностабілізуючої дії S-заміщених 2-метил-4-меркапто-8-метоксихінолінів проводили в умовах гострого токсичного гепатиту (Волошина Е.С. і співавт., 1999; Дроговоз С.М. і співавт., 2001).

У значенні біохімічних маркерів пошкодження гепатоцитів використовувалася активність амінотрансфераз – АлТ (КФ.2.6.1.1) та АсТ (КФ.2.6.1.2) у сироватці крові (В.В. Меньшиков, 1987).

Оцінку біологічної ефективності in vivo вивчали на моделі окисного стресу, який спричиняли двосторонньою перев’язкою загальної сонної артерії головного мозку (Дунаєв В.В. і співавт., 1998).

Інтенсивність процесів вільнорадикального окиснення ліпідів (ВРОЛ) у тканинах головного мозку оцінювали за накопиченням початкових, проміжних та кінцевих продуктів – дієнових кон’югатів (ДК), триєнкетонів (ТК) і малонового діальдегіду (МДА).

Стан антиоксидантної системи оцінювали за активністю супероксиддисмутази (СОД, КФ 1.15.1.1), каталази (КФ 1.11.1.6), глутатіонпероксидази (ГПР, КФ 1.11.1.9) та вмістом α-токоферолу.

Стан вуглеводно-енергетичного обміну визначали за рівнем АТФ, лактату, пірувату й малату. Для визначення їх рівня використовували уніфіковані методи (В.В. Меньшиков, 1987).

Вивчення гострої токсичності проводили на інтактних дорослих двостатевих мишах вагою 16-20 г. Середні летальні дози ЛД50 визначали за методом Прозоровського (Прозоровський В.Б., 1998).

Комп’ютерний прогноз біологічної активності S-заміщених похідних 2-метил-4-меркапто-8-метоксихіноліну та аналіз даних літератури показали, що зазначений ряд похідних хіноліну є перспективним класом хімічних сполук для пошуку антиоксидантів, нейропротекторних, гепатопротекторних лікарських засобів. З метою пошуку серед них ефективних біорегуляторів широкого спектру дії було проведено первинну оцінку біологічної дії сполук.

Синтез S-заміщених похідних 2-метил-4-меркапто-8-метоксихіноліну.

S-заміщені похідні 2-метил-4-меркапто-8-метоксихіноліну були синтезовані на основі 2-метил-4-хлоро-8-метоксихінолінів (І) і 2-метил-4-меркапто-8-метоксихінолінів (П) за відомими реакціями, що наведені на схемах 1, 2 [Бражко О.А. дис... доктора біол. наук: .- К., 2005].

Будову отриманих сполук (Табл.) доведено за допомогою елементного аналізу, ІЧ- та ПМР-спектроскопії, хромато-мас-спектрометрії, а чистота – за допомогою тонкошарової хроматографії.

Для забезпечення кращої водорозчинності синтезованих похідних вони були перетворені у ряді випадків у відповідні гідрохлориди або натрієві чи калієві солі (див. сполуки 2, 5, 6, 10, 12, 14, 15, 17, 19-21, 23, 25, 26, 34, 35).


Таблиця

S-заміщені похідні 2-метил-4-меркапто-8-метоксихінолінів

Сполука Сполука Сполука
1
13
25
2
14
26
3
15
27
4
16
28
5
17
29
6
18
30
7
19
31
8
20
32
9
21
33
10
22
34
11
23
35
12
24
36

Зв’язок між хімічною будовою й біологічною активністю в ряду S-заміщених 2-метил-4-меркапто-8-метоксихінолінів

Гостра токсичність. За результатами дослідження гострої токсичності показано, що ЛД50 синтезованих сполук знаходиться в межах від 566 − 2000 мг/кг і залежить від їх хімічної будови. Це дозволяє віднести їх до мало- та нетоксичних сполук за класифікацією Сидорова (Сидоров К.К., 1973).

Подовження карбонового ланцюга на метиленову групу не впливає на ЛД50 (сполуки 1 та 9). ЛД50 знаходиться майже на рівні – 900 і 969 мг/кг відповідно.

Наявність аміногрупи в карбоновому ланцюзі збільшує токсичність (сполука 16 – в порівнянні зі сполукою 9) – 898 і 969 мг/кг відповідно.

Заміна аміногрупи на гідроксильну в α-положенні карбонового ланцюга (сполука 32 – 2-гідрокси-3-(8-метокси-2-метилхінолін-4-ілтіо)пропанова кислота) не змінює ЛД50 в порівнянні зі сполукою 16.

Наявність N–ацетильного залишку в карбоновому ланцюзі в 4-му положенні хінолінового циклу зменшує токсичність (сполука 22 – 2-ацетиламіно-3-(8-метокси-2-метилхінолін-4-ілтіо)­пропанова кислота) в порівнянні зі сполукою 16. ЛД50 – 1245 мг/кг.

Етерифікація (-ОС2Н5) карбоксильної групи (сполука 4) збільшує гостру токсичність (ЛД50 – 714±56 мг/кг), а сполуки 13 – зменшує її (ЛД50 – <2000 мг/кг).

Найбільшу токсичність має гідрохлорид метилового естеру (8-метокси-2-метилхінолін-4-ілтіо)пропанової кислоти − сполука 12 (рис. 1). Його ЛД50 становить 566 мг/кг.

Рис. 1. Гостра токсичність S-заміщених 2-метил-4-меркапто-8-метоксихінолінів

Антирадикальна і антиоксидантна активність. У дослідах in vitro на моделі аутоокиснення адреналіну виявлено антирадикальну активність S-заміщених 2-метил-4-меркапто-8-метоксихінолінів. На цій моделі високу активність проявили водорозчинні форми – натрієві та калієві солі (сполуки 5, 6, 34). Подовження карбонового ланцюга на метиленову групу і наявність гідроксильної групи зменшує прояв антирадикальної активності (сполука 32) порівняно зі сполуками 5, 6 (рис. 2). Сполуки 5, 6 та 34 перевищують антирадикальну активність еталону порівняння – L-ацетилцистеїну.