Публікації.За матеріалами дисертації опубліковано 11 праць, у тому числі 5 статтей у наукових фахових журналах і збірниках та у 6 тезах доповідей.
Структура й обсяг дисертації. Дисертаційна робота викладена на 165сторінках машинописного тексту, складається зі вступу, огляду літератури, матеріалів і методів досліджень, чотирьох розділів власних досліджень, висновків, списку використаних джерел (183 найменування) і містить 28 таблиць та 35 рисунків.
ОСНОВНИЙ ЗМІСТ РОБОТИ
Огляд літератури. В огляді літератури на основі даних про біологічну активність похідних хіноліну обґрунтована перспективність пошуку біологічно активних речовин у ряду S-заміщених 2-метил-4-меркапто-8-метоксихінолінів.
Антиоксидантна активність (АОА) у дослідах in vitro вивчалася на моделях ініціації утворення вільних радикалів кисню та їх біологічної дії: інгібування супероксидрадикалу, ферментативне ініціювання (ФІ), неферментативне ініціювання (НФІ), утворення NO-радикалу (Ю.І. Губський і співавт., 2002).
Оцінку мембраностабілізуючої дії S-заміщених 2-метил-4-меркапто-8-метоксихінолінів проводили в умовах гострого токсичного гепатиту (Волошина Е.С. і співавт., 1999; Дроговоз С.М. і співавт., 2001).
У значенні біохімічних маркерів пошкодження гепатоцитів використовувалася активність амінотрансфераз – АлТ (КФ.2.6.1.1) та АсТ (КФ.2.6.1.2) у сироватці крові (В.В. Меньшиков, 1987).
Оцінку біологічної ефективності in vivo вивчали на моделі окисного стресу, який спричиняли двосторонньою перев’язкою загальної сонної артерії головного мозку (Дунаєв В.В. і співавт., 1998).
Інтенсивність процесів вільнорадикального окиснення ліпідів (ВРОЛ) у тканинах головного мозку оцінювали за накопиченням початкових, проміжних та кінцевих продуктів – дієнових кон’югатів (ДК), триєнкетонів (ТК) і малонового діальдегіду (МДА).
Стан антиоксидантної системи оцінювали за активністю супероксиддисмутази (СОД, КФ 1.15.1.1), каталази (КФ 1.11.1.6), глутатіонпероксидази (ГПР, КФ 1.11.1.9) та вмістом α-токоферолу.
Стан вуглеводно-енергетичного обміну визначали за рівнем АТФ, лактату, пірувату й малату. Для визначення їх рівня використовували уніфіковані методи (В.В. Меньшиков, 1987).
Вивчення гострої токсичності проводили на інтактних дорослих двостатевих мишах вагою 16-20 г. Середні летальні дози ЛД50 визначали за методом Прозоровського (Прозоровський В.Б., 1998).
Комп’ютерний прогноз біологічної активності S-заміщених похідних 2-метил-4-меркапто-8-метоксихіноліну та аналіз даних літератури показали, що зазначений ряд похідних хіноліну є перспективним класом хімічних сполук для пошуку антиоксидантів, нейропротекторних, гепатопротекторних лікарських засобів. З метою пошуку серед них ефективних біорегуляторів широкого спектру дії було проведено первинну оцінку біологічної дії сполук.
Синтез S-заміщених похідних 2-метил-4-меркапто-8-метоксихіноліну.
S-заміщені похідні 2-метил-4-меркапто-8-метоксихіноліну були синтезовані на основі 2-метил-4-хлоро-8-метоксихінолінів (І) і 2-метил-4-меркапто-8-метоксихінолінів (П) за відомими реакціями, що наведені на схемах 1, 2 [Бражко О.А. дис... доктора біол. наук: .- К., 2005].
Будову отриманих сполук (Табл.) доведено за допомогою елементного аналізу, ІЧ- та ПМР-спектроскопії, хромато-мас-спектрометрії, а чистота – за допомогою тонкошарової хроматографії.
Для забезпечення кращої водорозчинності синтезованих похідних вони були перетворені у ряді випадків у відповідні гідрохлориди або натрієві чи калієві солі (див. сполуки 2, 5, 6, 10, 12, 14, 15, 17, 19-21, 23, 25, 26, 34, 35).
Таблиця
S-заміщені похідні 2-метил-4-меркапто-8-метоксихінолінів
№ | Сполука | № | Сполука | № | Сполука |
1 | 13 | 25 | |||
2 | 14 | 26 | |||
3 | 15 | 27 | |||
4 | 16 | 28 | |||
5 | 17 | 29 | |||
6 | 18 | 30 | |||
7 | 19 | 31 | |||
8 | 20 | 32 | |||
9 | 21 | 33 | |||
10 | 22 | 34 | |||
11 | 23 | 35 | |||
12 | 24 | 36 |
Зв’язок між хімічною будовою й біологічною активністю в ряду S-заміщених 2-метил-4-меркапто-8-метоксихінолінів
Гостра токсичність. За результатами дослідження гострої токсичності показано, що ЛД50 синтезованих сполук знаходиться в межах від 566 − 2000 мг/кг і залежить від їх хімічної будови. Це дозволяє віднести їх до мало- та нетоксичних сполук за класифікацією Сидорова (Сидоров К.К., 1973).
Подовження карбонового ланцюга на метиленову групу не впливає на ЛД50 (сполуки 1 та 9). ЛД50 знаходиться майже на рівні – 900 і 969 мг/кг відповідно.
Наявність аміногрупи в карбоновому ланцюзі збільшує токсичність (сполука 16 – в порівнянні зі сполукою 9) – 898 і 969 мг/кг відповідно.
Заміна аміногрупи на гідроксильну в α-положенні карбонового ланцюга (сполука 32 – 2-гідрокси-3-(8-метокси-2-метилхінолін-4-ілтіо)пропанова кислота) не змінює ЛД50 в порівнянні зі сполукою 16.
Наявність N–ацетильного залишку в карбоновому ланцюзі в 4-му положенні хінолінового циклу зменшує токсичність (сполука 22 – 2-ацетиламіно-3-(8-метокси-2-метилхінолін-4-ілтіо)пропанова кислота) в порівнянні зі сполукою 16. ЛД50 – 1245 мг/кг.
Етерифікація (-ОС2Н5) карбоксильної групи (сполука 4) збільшує гостру токсичність (ЛД50 – 714±56 мг/кг), а сполуки 13 – зменшує її (ЛД50 – <2000 мг/кг).
Найбільшу токсичність має гідрохлорид метилового естеру (8-метокси-2-метилхінолін-4-ілтіо)пропанової кислоти − сполука 12 (рис. 1). Його ЛД50 становить 566 мг/кг.
Рис. 1. Гостра токсичність S-заміщених 2-метил-4-меркапто-8-метоксихінолінів
Антирадикальна і антиоксидантна активність. У дослідах in vitro на моделі аутоокиснення адреналіну виявлено антирадикальну активність S-заміщених 2-метил-4-меркапто-8-метоксихінолінів. На цій моделі високу активність проявили водорозчинні форми – натрієві та калієві солі (сполуки 5, 6, 34). Подовження карбонового ланцюга на метиленову групу і наявність гідроксильної групи зменшує прояв антирадикальної активності (сполука 32) порівняно зі сполуками 5, 6 (рис. 2). Сполуки 5, 6 та 34 перевищують антирадикальну активність еталону порівняння – L-ацетилцистеїну.