Смекни!
smekni.com

Белки, углеводы, жиры и липоиды (стр. 1 из 3)

Реферат

Белки, углеводы, жиры и липоиды


1. Белки

Белки имеют другое название — протеины («протос» — первый, главный, греч.) что подчеркивает их первостепенное значение для жизни.

В отличие от обычно встречающихся веществ белки обладают рядом существенных особенностей. Прежде всего, у них огромная молекулярная масса. Молекулярная масса такого органического вещества, как этиловый спирт, равна 46, уксусной кислоты — 60, бензола — 78 и т. д. Молекулярная масса одного из белков яйца равна 36 000; а одного из белков мышц достигает 1500 000. Ясно, что по сравнению с молекулами спирта или бензола и многих других органических соединений молекула белка — великан. В ее построении участвуют тысячи атомов. Для того, чтобы подчеркнуть гигантские размеры такой молекулы, ее обычно называют макромолекулой («макрос» — большой, греч.).

Среди органических соединений белки самые сложные. Они относятся к группе соединений, называемых полимерами. Молекула любого полимера представляет собой длинную цепь, в которой многократно повторяется одна и та же сравнительно простая структура, называемая мономером. Если обозначить мономер буквой А, то структура полимера может быть записана так: А—А—А—А—А—А—А. В природе, кроме белков, существует много других полимеров, например: целлюлоза, крахмал, каучук, нуклеиновые кислоты и др. В последние годы химики создали множество искусственных полимеров: полиэтилен, капрон, лавсан и пр. Большинство природных полимеров и все искусственные построены из одинаковых мономеров, и их структура именно такая, как на приведенной выше схеме. Белки же, в отличие от обычных полимеров, построены хотя и из сходных по структуре, но не вполне одинаковых мономеров.

Мономерами белка являются аминокислоты. В составе белковых полимеров обнаружено 20 различных аминокислот. Каждая аминокислота имеет особое строение, свойства и название. Для того чтобы понять, в чем состоит сходство между аминокислотами и чем они отличаются друг от друга, ниже даны формулы двух из них:

H3C NH2 CH CH NH2

CH – CH2 – C – COOH C – OH C – CH2 – C - COOH

CH3 H HC HC H

ЛейцинТирозин

Как видно из формул, в каждой аминокислоте содержится одна и та же группировка:


H – C – NH2

COOH

В нее входит аминогруппа (NH2) и карбоксильная группа (СООН). Наличие обеих этих групп в аминокислотах придает им амфотерные свойства, так как аминогруппе присущи основные (щелочные) свойства, а карбоксилу — кислотные. Содержанием аминогруппы и карбоксильной сходство между аминокислотами и ограничивается. Остальная часть молекулы у них разная и называется радикалом.

Радикалы у разных аминокислот различные; у одних — углеводородные цепи, у других — бензольные кольца и т. д.

Сцепление аминокислот при образовании белкового полимера происходит через общую для всех них группировку. Из аминогруппы одной аминокислоты и карбоксила другой выделяется молекула воды, и за счет освободившихся валентностей остатки аминокислот соединяются.

Между соединившимися аминокислотами возникает связь NH—СО, называемая пептидной связью, а образовавшееся соединение называется пептидом. Из двух аминокислот образуется дипептид (димер), из трех аминокислот таким же образом возникает трипептид (тример), из многих — полипептид (полимер). Природный белок и представляет собой полипептид, т. е. цепь из нескольких десятков или сотен аминокислотных звеньев. Белки различаются между собой и по составу аминокислот, и по числу аминокислотных звеньев, и по порядку следования их в цепи. Если обозначить каждую аминокислоту буквой, получится алфавит из 20 букв. Попробуйте теперь составить из этих букв фразы из 100, 200, 300 букв. Каждая такая фраза и будет соответствовать какому-нибудь одному белку. Достаточно переставить одну букву — и смысл фразы исказится, получится новая фраза и соответственно новый изомер белка. Легко себе представить, какое гигантское число вариантов можно при этом получить. Действительно, число различных белков, содержащихся в клетках животных и растений, исключительно велико.

Строение молекулы белка. Если учесть, что размер каждого аминокислотного звена составляет около 3 А, то очевидно, что макромолекула белка, которая состоит из нескольких сот аминокислотных звеньев, должна была бы представлять собой длинную цепь. В действительности же макромолекулы белка имеют вид шариков (глобул). Следовательно, в нативном белке («нативус» — природный, лат.) полипептидная цепь каким-то образом закручена, как-то уложена. Исследования показывают, что в укладке полипептидной цепи нет ничего случайного или хаотического, каждому белку присущ определенный, всегда постоянный характер укладки. В сложной структуре белковой макромолекулы различают несколько уровней организации. Первым, наиболее простым из них является сама полипептидная цепь, т. е. цепь аминокислотных звеньев, связанных между собой пептидными связями. Эта структура называется первичной структурой белка; в ней все связи ковалентные, т. е. самые прочные химические связи. Следующим, более высоким уровнем организации является вторичная структура, где белковая нить закручивается в виде спирали. Витки спирали располагаются тесно, и между атомами и аминокислотными радикалами, находящимися на соседних витках, возникает притяжение. В частности, между пептидными связями, расположенными на соседних витках, образуются водородные связи (между NH- и СО- группами). Водородные связи значительно слабее ковалентных, но, повторенные многократно, они дают прочное сцепление. Полипептидная спираль, «прошитая» многочисленными водородными связями, представляет достаточно устойчивую структуру. Вторичная структура белка подвергается дальнейшей укладке. Она сворачивается причудливо, но вполне определенно и у каждого белка строго специфично. В результате возникает уникальная конфигурация, называемая третичной структурой белка. Связи, поддерживающие третичную структуру, еще слабее водородных. Они называются гидрофобными. Это — силы сцепления между неполярными молекулами или неполярными радикалами. Такие радикалы встречаются у ряда аминокислот. По той же причине, по какой распыленные в воде частицы масла или какого-нибудь, другого гидрофобного вещества слипаются в капельки, происходит слипание гидрофобных радикалов полипептидной цепи. Хотя гидрофобные силы сцепления относятся к слабейшим связям, но благодаря их многочисленности они в сумме дают значительную энергию взаимодействия. Участие «слабых» связей в поддержании уникальной структуры белковой макромолекулы обеспечивает достаточную ее устойчивость и вместе с тем высокую подвижность. У некоторых белков в поддержании белковой макромолекулы существенную роль играют так называемые S—S (эс—эс связи) — прочные ковалентные связи, возникающие между отдаленными участками полипептидной цепи.

Выяснение всех деталей строения белковой макромолекулы, т. е. полная характеристика ее первичной, вторичной и третичной структуры, — очень сложная и длительная работа. Однако для ряда белков эти данные уже получены. На рисунке 66 изображена структура белка рибонуклеазы. Рибонуклеаза — один из первых белков, структура которого расшифрована полностью. Как видно из рисунка 66, первичная структура рибонуклеазы образована 124 аминокислотными остатками. Счет аминокислотных остатков в полипептидной цепи принято вести от аминокислоты, сохранившей NH2-группу (N — конец цепи), последней аминокислотой считается аминокислота, сохранившая карбоксильную группу (С — конец цепи). Таким образом, первая по счету аминокислота рибонуклеазы — лизин, вторая — глютаминовая кислота и т. д. Достаточно исключить или переставить одну аминокислоту в цепи — и вместо рибонуклеазы возникнет другой белок с другими свойствами.

Для упрощения на рисунке не показано, как закручивается в спираль полипептидная цепь, а третичная структура изображена в плоскости бумаги. Обратите внимание на «сшивки» между 26-й и 87-й аминокислотами, между 66-й и 73-й, между 56-й и 111-й, между 40-й и 97-й. В этих местах между радиолами аминокислоты цистеина, находящимися на удаленных участках полипептидной цепи, образуются —S—S-связи.

Денатурация белка. Чем выше уровень организации белка, тем слабее поддерживающие его связи. Под влиянием различных физических и химических факторов — высокой температуры, действия химических веществ, лучистой энергии и др.— «слабые» связи рвутся, структуры белка — третичная, вторичная — деформируются, разрушаются и свойства его изменяются. Нарушение нативной уникальной структуры белка называется денатурацией. Степень денатурации белка зависит от интенсивности воздействия на него различных факторов: чем интенсивнее воздействие, тем глубже денатурация.