Смекни!
smekni.com

Ароматические гетероциклические соединения (стр. 1 из 2)

АРОМАТИЧЕСКИЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ


Введение

1. Пиридин

1.1. Получение

1.2. Реакции по атому азота

1.3. Реакции электрофильного замещения

1.4. Реакции нуклеофильного замещения

1.5. Окисление и восстановление

2. Хинолин


Введение

Гетероциклическими называют соединения, содержащие циклы, включающие один или несколько гетероатомов. Наиболее устойчивыми являются пяти- и шестичленные циклы.

Гетероциклические соединения встречаются во многих природных соединениях и производятся в больших масштабах в промышленности. В данной главе мы будем рассматривать главным образом гетероциклические соединения, обладающие ароматическим характером. Такие гетероциклы называют гетероароматическими.

Существуют пятичленные, шестичленные и т.д. гетероциклы, обладающие ароматическим характером. Наиболее изученными из них являются пяти- и шестичленные соединения, поскольку их производные особенно распространены в природе и часто являются промышленными продуктами. В циклы этих соединений могут входить один, два и большее количество гетероатомов, причем как одинаковых, так и разных. Большинство из них имеют традиционные названия.


Большое значение имеют такие соединения, в которых указанные гетероциклы сконденсированы с другими кольцами.

Урацил Тимин Цитозин Индол Хинолин

1. Пиридин

Наиболее важным шестичленным гетероциклическим соединением является пиридин. Cтруктура пиридина во многом сходна со структурой бензола. Длина связи С-С в нем составляет 0,139 нм, а связи С-N - 0,137 нм.

Строение и стабильность пиридина и его ярко выраженный ароматический характер является следствием высокой степени делокализации электронов, пять из которых дают атомы углерода, а шестой - атом азота. Свободная пара электронов на атоме азота находится на s-орбитали, а потому не может участвовать в сопряжении.

Пиридин используется как растворитель и основной катализатор.

Пиридиновое кольцо встречается во многих природных соединениях (никотин, витамин B6). Никотин - стимулятор и яд содержится в стеблях и листьях табака.


Никотин Пиридоксин (витамин В6)

1.1. Получение

Пиридин получают пропусканием смесии ацетилена с циановодородом в молярном соотношении 2:1 через раскаленные трубки.

(1)

1.2. Реакции по атому азота

Пиридин является основанием и в присутствии кислот протонизируется:

(2)

Пиридинийхлорид

Пиридин реагирует с оксидом серы (VI) образуя пиридинсульфотриоксид:


(3)

Пиридинсульфотриоксид

Как любой третичный амин пиридин окисляется пероксидом водорода или надкислотами:


(4)

N-Оксипиридин

(N-окись пиридина)

(5)

Этилпиридинийбромид

Упр.1. Напишите реакцию пиридина с (а) соляной кислотой, (б) метилйодидом, (в) перекисью водорода.

Упр.2. Пиридинсульфотриоксид можно получать: (а) пропуская в пиридин пары оксида серы (VI), (б) медлено прибавляя к пиридину хлорсульфоновую кислоту. Напишите соответствующие реакции.

1.3. Реакции электрофильного замещения

Реакции электрофильного замещения с пиридином проходят сложнее, чем с бензолом, так как атом азота дезактивирует ароматическое ядро.

Присутствие основного атома азота в пиридиновом кольце препятствует реакции электрофильного замещения, т. к. катионы Br+, NO2+, SO3OH+ и RCO+, обычно замещающие атомы водорода в бензольном кольце, фиксируются атомом азота и делают его положительно заряженным, что дезактивирует кольцо.

Возникающий пиридиний - катион чрезвычайно нереакционноспособен по отношению к электрофильным реагентам из-за своего положительного заряда на атоме азота.

При атаке электрофила по a- или c-положению возникает крайне неустойчивый катион в то время как при атаке по b-положению он не особенно неустойчив:


Очень неустойчив

Неустойчив


(6)

(7)

Упр.3. Напишите реакции (а) нитрования и (б) сульфирования пиридина и опишите их механизм.

1.4. Реакции нуклеофильного замещения

Наибольшее значение для пиридина имеют реакции нуклеофильного замещения. При нагревании пиридина с амидом натрия образуется

2-аминопиридин (реакция Чичибабина):


(9)

2-Аминопиридин

(a-аминопиридин)

Реакция проходит по следующему механизму:

(М 1)

На практике гидрид натрия далее реагирует с a-аминопиридином давая натриевое производное аминопиридина:

(10)

Прибавление воды высвобождает a-аминопиридин:


(11)

Суммарно:

(13)

Взаимодействие пиридина со щелочью приводит к образованию 2-гидрокси-пиридина, существующего, как и a-аминопиридин, в двух таутомерных формах:


(14)

2-Пиридинол 2-Пиридинон

Упр.4. Напишите таутомерные формы a-аминопиридина.

При действии на пиридин литийорганических соединений a-атом водорода замещается на углеводородный радикал:

(15)

a-Бутилпиридин


(16)

a-Фенилпиридин

Упр.5. Напишите реакции получения (а) 2-аминопиридина,

(б) 2-гидроксипиридина, (в) 2-бутилпиридина, (г) 2-фенилпиридина и опишите их механизм.


1.5. Окисление и восстановление пиридина

Пиридиновое, как и бензольное кольцо устойчиво к окислению. Все три

(a,b и c) пиколина окисляются перманганатом калия в пиридинкарбоновые

(a,b и g-пиколиновые) кислоты:

(17)

Пиколины Пиколиновые кислоты

Никотин может быть окислен в никотиновую кислоту:


(18)

Никотин Никотиновая кислота

Никотиновую кислоту (витамин Р) синтетически получают по следующей схеме:

(19)

b-Пиридинсульфокислота Никотиновая кислота

Пиридин восстанавливается легче бензола. Например, натрием в спирте он восстанавливается в пиперидин:

(20)

Пиперидин

Упр.6. Напишите реакции окисления (а) c-пиколина, (б) никотина.

Упр.7. Напишите уравнения реакций взаимодействия пиридина со следующими реагентами: (а) нитратом натрия и серной кислотой (при 370оС);

(б) олеумом (в присутствии HgSO4 при 230оC); (в) амидом натрия, затем водой;

(г) гидроксидом калия в присутствии окислителя; (д) фениллитием;

(е) н-бутиллитием.

2. ХИНОЛИН

Хинолин и его гомологи содержатся в каменноугольной смоле. Существует много синтетических методов получения хинолина. Из них наиболее широко используемым является метод Скраупа. По методу Скраупа хинолин получают нагреванием анилина с глицерином в концентрированной серной кислоте в присутствии мягко действующего окислителя, такого как нитробензол: