По литературным данным, для потока нейтронов из ядерного реактора плотностью 5–10 нейтрон 1 см-сек чувствительность актнвацион-ного метода для различных элементов выражается следующими значениями: V – 0,003 у; Мп – 0,001 у; Sr– 0,6 у; Со – 0,04 у; Ga– 0,01 у; Cd– 0,10 у. Как утверждают, точность определений превышает 10%.
Ряд элементов – Li, Be, Mg, Al, Nb, Ti, Rh– не удается определить с достаточной чувствительностью методом активации нейтронами.
Масс-спектромстрия. Применение метода изотопного разбавления в соединении с масс-спектрометрией позволяет производить определение ряда элементов в твердых образцах с концентрацией до 10~. После того как образец введен в раствор, добавляется известное количество изотопного индикатора определяемого элемента. Затем элемент отделяют химически; изменение в изотопном составе, обусловленное индикаторным разбавлением, определяют масс-спектрометрнчески и таким образом находят первоначальное количество элемента. Таким способом успешно определяли уран в каменных метеоритах с концентрацией до 0,01 ч. на млн.
Около 7096 всех элементов имеет несколько стабильных изотопов и могут, по крайней мере в принципе, определяться методом изотопного разбавления. Современные масс-спектрометры дают возможность анализировать металлы и тугоплавкие вещества при температурах вплоть до 2500°; таким образом, теперь приготовление соединений с высокой упругостью пара при низкой температуре не так важно, как раньше.
Полярография в. Большинство аналитиков хорошо знакомо с принципами полярографического метода, и здесь необходимо лишь сказать, что по числу элементов, которые можно определять таким путем, по чувствительности и точности определений он конкурирует с колориметрическим и спектрометрическим методами, иногда даже превосходя их.
Катализ и индукция. Некоторые элементы можно определять путем ускорения ими окислительно-восстановительных реакций, в обычных условиях протекающих очень медленно. Например, осмий, рутений и иод сильно катализируют медленную реакцию
As+2Ce -» As+2Ce.
Катализирующие элементы с более высоким состоянием окисления быстро восстанавливаются мышьяком до состояний, которые вновь быстро реокисляются церием. Скорость катализируемой реакции пропорциональна концентрации катализатора и обычно очень легко определяется фотометрически путем измерения светопоглощения желтой окраски раствора в зависимости от времени. Осмий и иод можно обнаружить в растворах, разбавленных до концентраций 0,001 и 0,01 ч. на млн.'
Примером реакции индуцирования, которую можно применить для определения следов вещества, служит восстановление хрома четырехвалентным теллуром до более низкого состояния окисления, которое, по-видимому, соответствует четырехвалентному хрому:
При избытке хрома эту реакцию можно использовать для определения теллура титрованием, осуществляя взаимодействие Crс ионами фенантролина железа в растворе соответствующей кислотности:
Количество образовавшегося фенантролина железа, которое можно найти спектрофотометрическим измерением, соответствует эквивалентному количеству теллура. Этот косвенный метод определения теллура более чувствителен, чем любой прямой колориметрический метод, доступный для данного элемента.
Если в избытке находится теллур, то Сг, образовавшийся по реакции, вновь восстанавливается теллуром в хром, который восстанавливает фенантролин железа, и т.д. Эта реакция сочетает индукцию и катализ. Она позволяет обнаружить чрезвычайно малые количества хрома. Ланг приводит предельное значение концентрации при определении хрома, равное 1:2–10. Циклические реакции в конце концов завершаются благодаря побочным реакциям, например реакции между Те и Сг с образованием Cr.
Каталитические индуцированные реакции не имеют большого практического значения, если нет эффективного средства отделения анализируемого вещества.
Другие методы. Микроскопические методы, основанные на измерении диаметра королька золота, получаемого в результате купеляции, или шаровидных частиц ртути, нашли ограниченное применение.
Нехимический метод определения следов некоторых элементов, являющихся питательными веществами для бактерий, основан на избирательном росте микроорганизмов по отношению к ним.
Роль колориметрии в анализе следов веществ
В настоящее время основная масса анализов по определению следов веществ выполняется при помощи эмиссионной спектрографии и колориметрии. Спектрографический метод применим для определения любого элемента, однако с «чувствительностью, изменяющейся в широких пределах. Для некоторых элементов нет удовлетворительных колориметрических методов определения, для других эти методы недостаточно чувствительны, чтобы их использовать в анализе следов веществ. Колориметрическому определению лучше всего поддаются тяжелые металлы. Как правило, колориметрическое определение следов элементов требует проведения многочисленных операций разделения. В этом требовании заключается как слабая, так и сильная стороны метода. С одной стороны, не всегда есть эффективные методы разделения. В процессе разделения могут происходить незначительные потери определяемого компонента и не полностью удаляться элементы, мешающие определению. Процедура отделения следов элемента может оказаться довольно трудной. С другой стороны, если возможно осуществить удовлетворительное отделение – а это в действительности скорее правило, чем исключение, – влияние посторонних элементов устраняется, и колориметрический метод становится абсолютным. Этого часто нельзя сказать в отношении обычных спектрографических анализов, в ходе которых не делается никаких химических разделений, и точность результата может сильно зависеть от состава образца и от точности стандарта. Кроме того, точность колориметрического определения может превысить точность спектрографического определения; проще измерить оптическую плотность раствора, чем плотность линии на фотографической пластинке. Таким образом, выигрыш во времени, который дает спектрографический метод, может быть сведен на нет меньшей надежностью и точностью определений. Спектрографический метод анализа наиболее предпочтителен в тех случаях, когда приходится производить много определений одного или нескольких элементов на образцах примерно постоянного макроскопического состава. При небольшом числе измерений значительная работа, которую нужно проделать при калибровке прибора, вряд ли стоит затраченного времени. В этом случае более удобными могут оказаться колориметрические методы. По концентрационной чувствительности спектральный и колориметрический методы часто имеют меньшие различия, чем обычно считают. В спектрографическом методе анализа обычно применяют образец микроскопического размера, а это ведет к увеличению минимального процентного содержания элемента, которое можно определить, даже если абсолютная чувствительность метода высока. При колориметрическом определении величина анализируемого образца может быть в 100 раз больше, чем при простом спектрографическом определении, и поэтому более высокая относительная или концентрационная чувствительность колориметрического метода может уравновесить более высокую абсолютную чувствительность спектрографического метода. Если имеющееся в распоряжении количество анализируемого вещества ограничено, относительная чувствительность спектрального метода может, конечно, превзойти чувствительность колориметрического метода, но положение часто становится обратным, если доступны 1–2 г.вещества. Интересно провести некоторые сравнения спектрального и колориметрического методов по их чувствительности. Значения средней абсолютной чувствительности спектрального метода при различных способах возбуждения приведены ниже.
Способ возбуждения | Количество металла на электроде, мг |
Дуга постоянного тока | 10–5-Ю-4 |
Катодный слон дуги постоянного тока | 10-в_ш-5 |
Высоковольтная дуга переменного тока | Ю-» – ю-5 |
Конденсированная искра постоянного тока | 1 о-» – ю-* |
Практическая чувствительность некоторых цветных реакций соответствует 10 мг или меньше.
Метод дуговой спектрографии обычно применяют для определения следов элементов в силикатах. Чувствительность спектрального метода, выраженная в частях на миллион, при определении различных металлов указана ниже: Ag 1; Be 10, 1, 4; Cd 300; Со 2, 10; Сг 1, 1, 0,2; Ga 5, 10, 5; Ge 15; Mo 1, 5; Ni 2, 5; Pb 30, 10, 10; Zn 350, 100. Каждый из этих металлов можно определить колориметрически или флуо-риметрически с чувствительностью, равной 1 ч. на млн.
Посредством специальной методики, заключающейся во фракционной перегонке, некоторые относительно легко летучие металлы, такие, как цинк, кадмий, ртуть, индий, таллий, германий, мышьяк и висмут, можно обнаружить спектрографически в количестве порядка 0,01 ч. на мл при анализе образца силиката весом 1–3 г. Вообще чувствительность спектрографического анализа можно повысить, если элемент, подлежащий определению, предварительно отделить, так как абсолютная чувствительность спектрографического метода обычно выше по сравнению с колориметрическим методом. В прошлом и в значительной степени в настоящее время аналитики-спектрографисты в целом довольно редко прибегали