Смекни!
smekni.com

Альтернативная водородная энергетика как элемент школьного раздела химии: "Физико-химические свойства водорода" (стр. 1 из 10)

Альтернативная водородная энергетика как

элемент школьного раздела химии : «Физико-химические свойства водорода»

ОГЛАВЛЕНИЕ

Введение

Глава 1. ОСНОВЫ СОЗДАНИЯ ВОДОРОДНОЙ ЭНЕРГЕТИКИ

1.1. Основные концепции надежности и экологической безопасности объектов энергетики

1.2 Энергетика сегодня

1.2.1 Энергетические потребности, ресурсы и возможности

1.2.2 Экологические проблемы энергетики и пути их решения

1.2.2.1 Парниковый эффект

1.2.2.2.Загрязнение атмосферы

1.2.2.3 Озоновые «дыры»

1.3 Особенности альтернативной водородной энергетики

1.3.1 Назначение, основные функциональные показатели

1.3.2 Область применения

1.3.3.Основания для выбора

1.3.4 Состояние и тенденции развития

1.3.5 Влияние водородной энергетики на окружающую среду

1.3.6 Дополнительные сведения о применении водорода

в бытовых целях

1.3.6 Пути развития водородной энергетики

1.3.7 Пиролиз воды

Глава 2. ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ ПРОБЛЕМЫ СОЗДАНИЯ

ВОДОРОДНОЙ ЭНЕРГЕТИКИ

2.1 Сообщение 1. Суть водородной энергетики

2.2 Сообщение 2. Выполняется учениками, на основе материалов,

предоставленных учителем

2.3 Сообщение 3. Выполняется учениками, на основе материалов, предоставленных учителем

2.4 Сообщение 4. Выполняется учителем

2.5 Сообщение 5. Выполняется учениками, на основе материалов, предоставленных учителем

2.6.Сообщение 6. Выполняется учениками

2.7 Сообщение 7. Выполняется учителем при завершении изучения темы

Глава 3. ОСОБЕННОСТИ ИЗУЧЕНИЯ ХИМИЧЕСКИХ ЭЛЕМЕНТО В СРЕДНЕЙ ШКОЛЕ (НА ПРИМЕРЕ ВОДОРОДА)

3.1. Урок 1. Водород

3.2. Урок 2. Свойства и применение водорода

3. 3. Урок 3. Практическое занятие

3. 4. Урок 4. Контрольная работа

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

ЗАКЛЮЧЕНИЕ

ВЫВОДЫ


ВВЕДЕНИЕ

Актуальность выбранной темы обусловлена тем, что вопрос о поиске альтернативных видов топлива для защиты окружающей среды от негативных воздействий вызывает интерес. А интерес учащихся к теме – это инструмент педагога, позволяющий намного облегчить усвоение материала и повысить качество знаний. К тому же теоретический анализ проблемы и разработка мероприятий по теме «Альтернативная водородная энергетика» с использованием новых методических приемов позволит решать задачи естественнонаучного образования, а именно формирование экологического и научного мировоззрения [1]. Кроме того, возрастание значимости экологических проблем требует постоянно изыскивать пути, дополнительные резервы повышения уровня преподавания естественнонаучных дисциплин, позволяющего формировать правильное отношение к окружающей среде и понимать закономерности развития природы.

Исходя из актуальности исследования, основной целью данной дипломной работы являлось:

Рассмотрение возможности экологизации раздела химии: «Физико-химические свойства водорода» путем внедрения темы: «Альтернативная энергетика».

В связи с этим в дипломной работе решались следующие конкретные задачи:

1) разработать обзор сведений о водородной энергетике как альтернативном виде энергии

2) выбор соответствующих форм организации занятий в рамках

«Альтернативная водородная энергетика»;

3) составление тестовых заданий по изучаемой теме;

4) апробация разработанных методик в МОУ СОШ гимназии № 1 г. Нальчика;

Предмет исследования – возможности введения в практику обучения новых прикладных и экологических аспектов при изучении темы «Альтернативная водородная энергетика».

Объект исследования – познавательная деятельность учеников девятых классов МОУ СОШ №1 г. Нальчика.

Гипотеза – разработка и реализация новых методических подходов к изучениютемы «Альтернативная водородная энергетика» с акцентированием на прикладные и экологические аспекты позволит сформировать положительную мотивацию к учению и сделать очередной шаг в процессе формирования экологического мировоззрения учащихся [2, 3].

Глава 1. ОСНОВЫ СОЗДАНИЯ ВОДОРОДНОЙ ЭНЕРГЕТИКИ

1.1 Основные концепции надежности и экологической безопасности объектов энергетики

Не так важно, каково ваше мнение о нуждах энергетики, об источниках энергии, ее качестве и себестоимости. Нам, по-видимому, следует лишь согласиться с тем, что сказал ученый мудрец, имя которого осталось неизвестным: «Нет простых решений, есть только разумный выбор».

Энергетические объекты (топливно-энергетический комплекс вообще и объекты энергетики в частности) по степени влияния на окружающую среду принадлежат к числу наиболее интенсивно воздействующих на биосферу.

Увеличение напоров и объемов водохранилищ гидроузлов, продолжение использования традиционных видов топлива (уголь, нефть, газ), строительство АЭС и других предприятий ядерного топливного цикла (ЯТЦ) выдвигают ряд принципиально важных задач глобального характера по оценке влияния энергетики на биосферу Земли. Если в предыдущие периоды выбор способов получения электрической и тепловой энергии, путей комплексного решения проблем энергетики, водного хозяйства, транспорта и др. и назначение основных параметров объектов (тип и мощность станции, объем водохранилища и др.) проводились в первую очередь на основе минимизации экономических затрат, то в настоящее время на первый план все более выдвигаются вопросы оценки возможных последствий возведения и эксплуатации объектов энергетики.

Это, прежде всего, относится к ядерной энергетике (АЭС и другие предприятия ЯТЦ), крупным гидроузлам, энергокомплексам, предприятиям, связанным с добычей и транспортом нефти и газа и т.п. Тенденции и темпы развития энергетики сейчас в значительной степени определяются уровнем надежности и безопасности (в том числе экологической) электростанций разного типа. К этим аспектам развития энергетики привлечено внимание специалистов и широкой общественности, вкладываются значительные материальные и интеллектуальные ресурсы, однако сама концепция надежности и безопасности потенциально опасных инженерных объектов остается во многом мало разработанной.

Развитие энергетического производства, по-видимому, следует рассматривать как один из аспектов современного этапа развития техносферы вообще (и энергетики в частности) и учитывать при разработке методов оценки и средств обеспечения надежности и экологической безопасности наиболее потенциально опасных технологий.

Одно из важнейших направлений решения проблемы - принятие комплекса технических и организационных решений на основе концепций теории риска.

Объекты энергетики, как и многие предприятия других отраслей промышленности, представляют источники неизбежного, потенциального, до настоящего времени практически количественно не учитываемого риска для населения и окружающей среды. Под надежностью объекта понимается его способность выполнять свои функции (в данном случае - выработка электро- и тепловой энергии) в заданных условиях эксплуатации в течение срока службы. Или наиболее подробно: свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующие способность выполнять требуемые функции в заданных режимах и условиях применения.

Под экологической безопасностью понимается сохранение в регламентируемых пределах возможных отрицательных последствий воздействия объектов энергетики на природную среду. Регламентация этих негативных последствий связана с тем, что нельзя добиться полного исключения экологического ущерба.

Отрицательные последствия воздействия энергетики на окружающую среду следует ограничивать некоторым минимальным уровнем, например, социально-приемлемым допустимым уровнем. Должны работать экономические механизмы, реализующие компромисс между качеством среды обитания и социально-экономическими условиями жизни населения. Социально-приемлемый риск зависит от многих факторов, в частности, от особенностей объекта энергетики.

В силу специфики технологии использования водной энергии гидроэнергетические объекты преобразуют природные процессы на весьма длительные сроки. Например, водохранилище ГЭС (или система водохранилищ в случае каскада ГЭС) может существовать десятки и сотни лет, при этом на месте естественного водотока возникает техногенный объект с искусственным регулированием природных процессов - природно-техническая система (ПТС). В данном случае задача сводится к формированию такой ПТС, которая обеспечивала бы надежное и экологически безопасное формирование комплекса. При этом соотношение между основными подсистемами ПТС (техногенным объектом и природной средой) может быть существенно различным в зависимости от выбранных приоритетов - технических, экологических, социально-экономических и др., а принцип экологической безопасности может формулироваться, например, как поддержание некоторого устойчивого состояния создаваемой ПТС.

Другой оказывается постановка задачи оценки возможных последствий для окружающей среды при создании объектов ядерной энергетики. Здесь под экологической безопасностью понимается концепция, согласно которой при проектировании, строительстве, эксплуатации и снятии с эксплуатации АЭС, а также других объектов ЯТЦ предусматривается и обеспечивается сохранение региональных экосистем. При этом допускается некоторый экологический ущерб, риск которого не превосходит определенного (нормируемого) уровня. Этот риск минимален в период штатной эксплуатации АЭС, возрастает при возведении объекта и снятии его с эксплуатации и, особенно - в аварийных ситуациях. Необходимо учитывать влияние на окружающую среду всех основных факторов техногенного воздействия: радиационного, химического теплового (с учетом их возможного нелинейного взаимодействия). Следует иметь в виду и различные масштабы возможных последствий: локальный (тепловое пятно сброса подогретых вод в водоемы и водотоки), региональный (выброс радионуклидов), глобальный (рассеяние долгоживущих радионуклидов по биосферным каналам). Если же создается крупное водохранилище - охладитель, то, как в случае гидроэнергетического объекта, должна ставиться задача об экологически безопасном функционировании сложной ПТС (с учетом отмеченной специфики АЭС).