Смекни!
smekni.com

Альтернативная водородная энергетика как элемент школьного раздела химии: "Физико-химические свойства водорода" (стр. 3 из 10)

1.2.2.3 Озоновые "дыры"

Впервые уменьшение толщины озонового слоя было обнаружено над Антарктидой.

Этот эффект - результат антропогенного воздействия. Сейчас обнаружены и другие озоновые дыры. В настоящее время заметно уменьшение количества озона в атмосфере над всей планетой. Оно составляет 5-6% за десятилетие в зимнее время и 2-3% - в летнее время. Некоторые ученые считают, что это проявление действия фреонов (хлорфторметанов), но озон разрушается также оксидом азота, которые выбрасываются предприятиями энергетики. Отрицательное влияние атомных электростанций сказывается, прежде всего, на атмосфере. Правда, при нормальной работе АЭС вероятность радиоактивного загрязнения невелика. Но в случае аварии воздействие радиоактивных выбросов носит глобальный характер.

Сегодня глобальная среднегодовая потребность в энергии составляет ~8 трлн. ватт.

Иными словами для обеспечения нужд одного жителя Земли нужно 12 человек обслуживающего персонала.

Если наш образ жизни, будет и дальше так развиваться, как сейчас, то в будущем потребность в энергии станет громадной. Если производство продовольствия будет идти в ногу с ростом населения, то к 2000 г. производство азотных удобрений должно увеличиться в 1 00 раз. Одно лишь это потребует около 20% объёма ныне производимой энергии. Опреснённая вода, которая часто рассматривается как неотъемлемая часть будущего, для своего получения требует громадных затрат энергии.

Среднегодовое потребление энергии увеличивается на 5.7%. Если этот темп сохранится, за следующие 20 лет расход энергии увеличится в 4.5 раза. Основным источником получения энергии в мире дающим 97% её количества является ископаемое топливо, в том числе 38% составляет уголь, 19%-природный газ и 10%- нефть.2% электроэнергии вырабатывается на ГЭС, а другие источники, такие как ядерный распад, древесина и прочие вырабатывают 1 % энергии [3].

Таблица 1.

Энергетические системы, пригодные для использования человеком

№ вида Энергетические системы
ТИП 1(основаны на возобновляемых источниках энергии)
1. На:гравитационных силах; молекулярном движении; движении приливов и волн; движении воздуха; геотермальных силах
2. фотосинтезе растений; жизнедеятельности организма
3. Фотохимических, фотоэлектрических и термоэлектрических процессах
ТИП 2(основаны на возобновляемых источниках энергии)
1. На:сжигании радиационного топлива
2. внутриядерных процессах
3. биохимическом преобразовании энергии
4. водородном топливе

Всего сказанного выше достаточно для того, чтобы убедиться в необходимости пере хода человечества на новые виды энергии, не связанные со сжиганием традиционного топлива. Для удобства рассмотрения вопросов поиска новых источников энергии кажется целесообразным, прежде всего, все существующие на земном шаре энергетические системы, использование которых осуществляется или потенциально может осуществляться человеком, разделить условно на два типа:

- системы, основанные на возобновляемых источниках энергии;

- системы, основанные на невозобновляемых источниках.

Каждый тип, в свою очередь, можно подразделить на несколько видов энергетических систем (табл. 1).

Системы, относящиеся к первому виду, малоперспективны, несмотря на их экологическую чистоту. В начале века, по имеющимся оценкам, они смогут удовлетворить мировые потребности лишь на 5 - 10% [4].

Таблица 2 Различные источники энергии, их состояние, экологичность, перспективы развития

Источник энергии Состояние и экологичность Перспективы использования
Уголь ТвердоеХимическое загрязнение атмосферы, условно принятое за 1 Потенциальные запасы 10125 млрд. т, перспективен не менее чем на 100 лет
Нефть ЖидкоеХимическое загрязгнение атмосферы 0, 6 условных единиц Потенциальные запасы 270-290 млрд. т, перспективен не менее чем на 30 лет
Газ ГазообразноеХимическое загрязгнение атмосферы 0, 2 условных единиц Потенциальные запасы 270 млрд. т, перспективен на 30 - 50 лет
Сланцы ТвердоеЗначит. Количество отходов и трудно устраняемые выбросы Запасы более 38400 млрд. т, малоперспективен из-за загрязнений
Торф ТвердоеВысокая зольность и эколог. нарушения в местах добычи Запасы значительны: 150 млрд. т, малоперспективен из-за высокой зольности и экол. нарушений в местах выработки
Гидроэнергия ЖидкоеНарушение экологич. баланса Запасы 890 млн. т нефт. эквивалента
Геотермальная энергия ЖидкоеХимическое загрязнение Неисчерпаемы, перспективен
Солнечная энергия Практически неисчерпаем
Энергия приливов ЖидкоеТепловое загрязнение Практически неисчерпаем
Энергия атомного распада Твердое Запасы физически исчерпаемы, экологически опасен

Схема 1 . Энергетические ресурсы и структура использования

Соотношение используемых энергетических ресурсов в истории человечества менялось с развитием цивилизации в зависимости от истощения исчерпаемых энергоресурсов, возможности использования и экологических последствий. За последние 200 лет можно выделить три этапа:

можно выделить три этапа:

·угольный этап охватывающий весь XIX век и первую половину ХХ века, в это время преобладает потребление угольного топлива;

·нефтегазовый этап со второй половины ХХ века до 80-х годов, на смену углю приходит газ и нефть как более эффективные энергоносители чем твердые;

·начиная с 80-х годов начинается постепенный переход от использования минеральных исчерпаемых ресурсов к неисчерпаемым (энергии Солнца, воды, ветра, приливов и т.д.).

Особо следует сказать о ядерной энергетике. С начала мирового энергетического

кризиса роль атомной энергетики возросла. Но уже в начале 80-х годов рост потребления атомной энергии замедлился. В большинстве стран были пересмотрены планы сооружения АЭС. Это было последствием ряда экологических загрязнений при авариях, особенно в результате Чернобыльской катастрофы. Именно в этот период многие страны приняли решение о полном или постепенном отказе от развития атомной энергетики.

1.3 Особенности альтернативной водородной энергетики

Водородная энергетика включает следующие основные направления:

Разработка эффективных методов и процессов крупномасштабного получения дешевого водорода из метана и сероводородсодержащего природного газа, а также на базе разложения воды; технологии хранения, транспортировки и использования водорода в энергетике, промышленности, на транспорте.

1.3.1 Назначение, основные функциональные показатели

Водородная технология позволит остановить прогрессирующий рост загрязнения окружающей среды, исключив или принципиально сократив эмиссию токсикоагентов в тропосферу, в том числе, приземный слой атмосферы.

При получении больших объемов водорода из метана и серо содержащих природных газов может быть использована плазменно-мембранная технология удельной производительностью более чем в 100 раз выше по сравнению с традиционной. Удельные энергозатраты на производство 1 м3 водорода оказываются ниже реализованных в традиционной технологии в 2-3 раза (около 1 кВт/ч).

Производство водорода из воды возможно на новом типе электролизеров на базе катионопроводящей мембраны МФ-4СК, выпускаемой в России и обеспечивающей получение водорода более высокой чистоты с удельными энергозатратами в 1,5 меньшими, чем у традиционных систем. Удельная производительность аппаратов в 10 раз выше, чем у предыдущего поколения.

1.3.2 Область применения

Водородная технология используется для автономного обеспечения различных видов наземного транспорта и жидководородных силовых установок для авиации, стационарных энергосистем с водородным аккумулированием энергии (ветровые, солнечные и другие виды энергоустройств). Применение водорода в химии, газо- и нефтехимии, производстве минеральных удобрений, биотехнологии, металлургии и т.д. позволит отказаться от традиционной организации процесса, повысить его качество и экономичность при ликвидации полного или основного выброса загрязняющих веществ в атмосферу.

1.3.3 Основания для выбора

Технология даст возможность крупномасштабно получать дешевый водород в качестве ценного сырья и реагента при производстве удобрений, метанола, а также в процессах переработки нефти. Ресурсы сырья практически неограниченны. Водород является экологически чистым энергоносителем и его применение в энергетике, промышленности и на транспорте окажет положительное влияние на состояние окружающей среды.

1.3.4 Состояние и тенденция развития

В настоящее время в России создан ряд демонстрационных установок, реализующих новые высокоэффективные технологии получения и использования водорода из метана, природных серосодержащих газов с помощью плазменно-мембранной технологии. При этом исключаются катализаторы и традиционные жидкостные системы газораспределения. Оно осуществляется посредством мембранных аппаратов. Существующие в мире системы имеют вместо этой стадии громоздкий термокаталитический процесс, экологически некорректный, с более высокими энергозатратами (в 2-3 раза) и низкой удельной производительностью.