Система номенклатуры для описания возможных типов циклизаций проиллюстрирована на рис. 5. Она определяется характером гибридизации атома, атакуемого нуклеофилом, и тем, происходит ли сдвиг электронов от нуклеофильного центра к эндоциклическому (эндо) или экзоциклическому (экзо) атому.
Рис. 5. Варианты замыкания цикла при нуклеофильно-электрофильном взаимодействии.
Внутримолекулярное замещение при насыщенном атоме углерода – пример экзотет-процесса, а нуклеофильное присоединение к карбонильной группе и процессы присоединения–элиминирования с участием карбонильной группы относятся к экзотриг-типу.
Для того чтобы определить, какая из циклических систем образуется преимущественно при замыкании цикла, необходимо учитывать размер образующегося цикла и характер переходного состояния, приводящего к нему. Свободная энергия активации
процесса состоит из энтальпийной ( ) и энтропийной ( ) компонент (Т – абсолютная температура):Энтропия активации для внутримолекулярного процесса связана с вероятностью подхода двух реакционных центров одной молекулы друг к другу. Эта вероятность уменьшается (
приобретает большое отрицательное значение) при увеличении длины цепи. Энтальпия активации отражает напряженность переходного состояния, приводящего к образованию цикла. Значение энтальпии активации наименьшее при образовании пяти- и шестичленных циклов и несколько увеличивается при образовании более напряженных трех- и четырехчленных циклических систем. Значение велико при образовании циклов среднего размера (от восьми- до одиннадцатичленных), что связано с пространственными взаимодействиями в кольце. Значение свободной энергии активации при образовании циклов среднего размера также велико, поэтому замыкание таких циклов затруднено.Другой важный фактор при определении возможности протекания процесса замыкания цикла связан с геометрией подхода нуклеофильного центра к электрофильному в переходном состоянии. Хорошо известно, например, что при бимолекулярном нуклеофильном замещении при насыщенном атоме углерода реализуется переходное состояние, в котором нуклеофил приближается со стороны, противоположной уходящей группе. Атака нуклеофилом карбонильной группы предпочтительна сверху или снизу плоскости связи С=О под углом, близким к тетраэдрическому. Преимущественные направления атаки нуклеофилами различных электрофильных центров продемонстрированы на рис. 4. Вероятно, небольшие отклонения от подходящей геометрии допустимы, однако напряжение в некоторых типах процессов, приведенных на рис. 6, затрудняют образование циклов с пятью и меньшим количеством атомов. Например, можно предположить, что процесс эндо-триг «невыгоден» для образования циклов с числом атомов, меньшим шести. Действительно, такие реакции идут с большим трудом. Процесс эндо-диг с этой точки зрения еще более «невыгоден», но приводит к замыканию пятичленных циклов. Это возможно из-за того, что π-связи функциональной группы с sp-гибридизованным атомом углерода расположены в той же плоскости, что и нуклеофил, тогда как в эндотриг-процессе подход нуклеофила осуществляется сверху или снизу плоскости молекулы.
Замещение при насыщенном атоме углерода.
Внутримолекулярный вариант реакции SN2-типа широко используется для замыкания насыщенных гетероциклов. Наиболее легко этот процесс протекает при образовании пяти- и шестичленных циклов, поскольку при таком размере кольца наблюдается наилучший баланс между энтальпийной и энтропийной компонентами – кольца не напряжены и переходные состояния доступны. Циклизация бромоалкиламинов Br(CH2)n-1NH2 с образованием пяти- и шестичленных циклов особенно благоприятна. Азиридины (n = 3) образуются в результате этого процесса также достаточно легко, несмотря на существующее напряжение в трехчленном цикле. Малая степень упорядочения, требуемая для переходного состояния, облегчает протекание реакции. [Циклизация бромоацетат-анионов, приводящая к α-лактону, идет существенно медленнее, возможно, из-за возникновения дополнительного напряжения, связанного с включением sр2-гибридного атома углерода в цикл.]
Реакции этого типа сопровождаются инверсией при атоме углерода. На рис. 7 приведен пример стереоселективного образования цис- и транс-2,3-дифенилазиридинов из трео- и эритро-хлороаминов.
В тех случаях, когда скорость замыкания цикла мала, вероятно протекание межмолекулярных процессов и выход циклического продукта снижается. Например, взаимодействие 3-хлоропропанола с гидроксидом натрия в водном метаноле приводит к ациклическим продуктам сольволиза с выходом 78% и к оксетану лишь с выходом 14% (рис. 8).
Эффективность замыкания трех- и четырехчленных циклов увеличивается, если атом углерода, несущий нуклеофильную группу, максимально замещен. Это проиллюстрировано на примере образования оксиранов из этиленхлорогидринов (табл. 1). Увеличение скорости при введении заместителей связано с тем, что при образовании малого цикла величины валентных углов отклоняются от тетраэдрического, что уменьшает стерические затруднения.
Таблица 1. Относительные скорости реакций замыкания цикла для этиленхлорогидринов (водн. NaOH, 18 0C)
Субстрат | Относительная скорость |
1 | |
325 | |
39000 |
Cинтетическая значимость процессов замыкания цикла существенно возрастает при создании методов, позволяющих генерировать insitu подходящие предшественники циклических соединений. Для получения оксиранов из карбонильных соединений обычно используют два основных метода: реакцию Дарзана – взаимодействие карбонильных соединений с α-галогенокетонами и эфирами α-галогенокарбоновых кислот или синтезы с использованием илидов серы. Внутримолекулярное нуклеофильное замещение в образующихся интермедиатах приводит к замыканию оксиранового цикла.
В процессах замыкания цикла, основанных на внутримолекулярных SN-реакциях, используют в качестве нуклеофилов не только амино- и гидроксигруппы. В табл. 2 приведены примеры реакций, в которых еноляты кетонов и амиды в присутствии оснований выступают в качестве нуклеофилов.
Таблица 2. Примеры реакций замыкания цикла с использованием внутримолекулярного нуклеофильного замещения при насыщенном атоме углерода (все приведенные процессы замыкания цикла относятся к экзо-тет-типу).
Реагенты | Интермедиат | Продукт реакции |
Внутримолекулярное нуклеофильное присоединение к карбонильной группе.
Внутримолекулярное нуклеофильное присоединение к карбонильной группе широко используется для синтеза гетероциклических соединений. Нуклеофильная атака по карбонильной группе эфиров и хлороангидридов карбоновых кислот, а также аналогичных соединений сопровождается элиминированием уходящей группы, а карбонильная группа сохраняется в образующемся гетероцикле. Присоединение нуклеофила к карбонильной группе альдегидов и кетонов обычно влечет за собой дегидратацию образующегося циклического интермедиата, особенно в случаях, приводящих к гетероароматическим соединениям. При использовании слабых нуклеофилов циклизацию проводят при кислом катализе, в этом случае нуклеофил атакует активированную протонированием карбонильную функцию.
Различают три типа внутримолекулярного замыкания цикла с участием карбонильной групп альдегидов и кетонов: замыкание цикла по альдольному типу включает атаку нуклеофильным атомом углерода и приводит к гетероароматическому соединению; замыкание цикла происходит при нуклеофильной атаке гетероатомом; нуклеофильная атака орто-углеродного атома производных бензола приводит к бензоконденсированным гетероциклам.
Метод синтеза 2-замещенных индолов (табл. 3) основан на замыкании цикла при нуклеофильной атаке атомом азота аминогруппы карбонильной функции. Аминосоединение обычно не выделяют, а генерируют insitu при восстановлении. Также легко замыкание цикла идет при атаке гидроксильной и тиольной группами. Например, при синтезе изоксазолов взаимодействие β-дикарбонильного соединения с гидроксиламином приводит к монооксиму, который можно обнаружить в реакционной смеси. Дальнейшее замыкание цикла в монооксиме протекает довольно быстро и сопровождается элиминированием молекулы воды.