Смекни!
smekni.com

Адипиновая кислота (стр. 2 из 5)

Наиболее распространен в настоящее время метод окисления азотной кислотой продуктов воздушного окисления циклогексана. Наиболее широко в промышленности используется двустадийный процесс, в котором на второй стадии окисление проводят азотной кислотой. Такие процессы оказались особенно эффективными при создании комбинированных производств капролактама и адипиновой кислоты.

Учитывая большие масштабы производства адипиновой кислоты, особое внимание уделяется созданию непрерывных схем окисления циклогексанола или его смесей с циклогексаноном азотной кислотой. Для промышленного производства адипиновой кислоты широко используется окисление циклогексанола азотной кислотой. При этом применяют циклогексанол, полученный окислением циклогексана воздухом или гидрированием фенола, а также сырую смесь продуктов окисления циклогексана воздухом, полученную после отгонки непрореагировавшего циклогексана.

Известны периодический и непрерывный методы производства адипиновой кислоты. Приводим технологическую схему периодической установки (І7) (См. Рис.1).

Для окисления применяется б0-б5%-ная азотная кислота. После её нагревания а реакторе до 50°С туда же подают в течение 1,5 часа цикло-гексанол. Так как реакция протекает с выделением значительного количества тепла, в змеевик реактора подают для охлаждения воду, поддерживая температуру 62-67 °С. Во время окисления реакционную смесь интенсивно перемешивают, а по окончании подачи циклогексанола продувают воддухом 40-45 мин. при 80˚С для удаления нитрозных газов. Далее реакционную смесь охлаждают в кристаллизаторе до 20˚С и полученную суспензию разделяют на нутч-фильтре.

Выделенную адипиновую кислоту растворяют в деминерализованной воде и после перекристаллизации сушат в барабанной сушилке. Высушенная адипиновая кислота содержит около 0,1% влаги.

Рис.1. Схема установки периодического действия для получения адипиновой кислоты окислением циклогексанола азотной кислотой: 1-напорный мерник азотной кислоты; 2 – напорный мерник циклогексанола; 3 – каплеотбойник; 4 – холодильник; 5 – сепаратор; 6 - реактор окисления циклогексанола азотной кислотой; 7,10- кристаллизаторы, 8,11 – нутч-фильтры; 9 – растворитель; 12 – мерник деминерализованной воды; 13 – сушильный барабан; 14 – циклон.

Специалисты Северодонецкого филиала Восточноукраинского госуниверситета Т.Б. Колесникова, В.М. Каут и др. приводят данные окисления циклогексанола азотной кислотой в присутствии органических примесей-активаторов (18). Определено положительное действие этих примесей на селективность процесса, изучена возможность щавелевой кислоты активизировать процесс окисления циклогексанола азотной кислотой до адипиновой кислоты. Введение активаторов в реакционную массу способствует повышению селективности до 94-95% и снижению количество отходов. Щавелевая кислота, которая образуется в небольших количествах, полностью разлагается, повышая селективность процесса (См. табл.2 ) (18).

Широко распространен в мире промышленный метод получения адипиновой кислоты окислением смеси циклогексанона и циклогексанола, а также сырой смеси продуктов воздушного окисления циклогексана. При использовании сырой смеси отпадает необходимость выделения чистых циклогексанона и циклогексанола ректификацией. Кроме того в сырой смеси содержится некоторое количество адипиновой кислоты, а также имеются побочные продукты окисления, которые в процессе доокисления азотной кислотой дают дополнительное количество адипиновой кислоты.

Таблица 2

суміші, % %
1 За відсутності добавки 0 4 88,4
2 Cu-V каталізатор 0,2 5 92,5
3 Щавлева кислота 0,015 6 89,6
4 Те ж саме 0,025 5 90,5
5 -«- 0,1 0 94,0
6 -«- 0,11 7 93,7
7 Гліцерин 0,015 4 89,4
8 Те ж саме 0,025 0 90,0
9 -«- 0,16 8 95,8
10 -«- 0,17 6 95,6
11 Етиленгліколь 0,015 4 89,4
12 -«- 0,025 9 89,9
13 -«- 0,078 0 92,0
14 -«- 0,09 6 89,6

Сырую смесь продуктов воздушного окисления циклогексана используют для производства адипиновой кислоты многие зарубежные фирмы (США, Японии и др.). В качестве окислителя применяют 50-60% азотную кислоту. Поступающая на окисление сырая смесь после отгонки непревращенного циклогексана содержит 28,4% циклогексанона, 29,6 - циклогексанола, 3,2% -сложных эфиров и около 10% воды. Окисление азотной кислотой ведут в присутствии катализатора, состоящего из меди и ванадия. Температуру процесса поддерживают в пределах 55-585˚С. При этих условиях выход адипиновой кислоты достигает 90-93% от теоретического. В промышленных условиях рекомендуется применять аппараты с выносными холодильниками, так как это дает возможность путем изменения количества циркулирующей реакционной смеси более тонко регулировать концентрацию азотной кислоты в месте её смешения с органическим сырьем. В крупных промышленных установках процессведут в двух трубчатых реакторах, установленных последовательно. Температуру в первом реакторе поддерживают ~70°С, во втором ~ 100˚С. Практически отношение количества циркулирующей смеси к количеству подаваемого на окисление органического сырья достигает 50:1. Реакционную смесь после окончания окисления продувают горячим воздухом, для удаления окислов азота и передают в дистилляционную установку для концентрирования. Концентрирование с целью уменьшения коррозии проводят в вакууме. В процессе концентрирования удаляются некоторые побочные продукты реакции (валерьяновая и масляная кислоты и др.). Стадия извлечения, адипиновой кислоты из упаренного реакционного раствора состоит в кристаллизации (однократной, или двукратной), которую проводят при 40-50°С. После центрифугирования маточный раствор повторно упаривают и снова подвергают кристаллизации. После второй кристаллизации основное количество маточного раствора возвращают в реактор окисления. Во избежание накопления низших дикарбоновых кислот часть маточного раствора выводят из цикла (17).

Выбор периодической или непрерывной схемы зависит в основном от требуемой производительности установки. В свою очередь, производительность определяется такими факторами, как способ отвода тепла реакции, время контактареагентов, необходимое для завершения процесса окисления, а также время, необходимое для выделения из реакционной смеси нитрозных газов.

При выборе типа реактора окисления следует учитывать также следующие обстоятельства:

- для поддержания постоянных оптимальных условий реакции (температура, концентрация и др.) необходимо интенсивное перемешивание реакционной смеси;

- для обеспечения хорошей регенерации азотной кислоты из реакционных газов и из жидких продуктов реакции необходимо возможно более полное выделение нитрозных газов;

- для увеличения выхода адипиновой кислоты и улучшения абсорбции окислов азота из реакционных газов целесообразно применение повышенного давления в реакторах окисления.

Для установок производительностью не более 0,5 т/ч рекомендуется периодическая схема производства адипиновой кислоты. В такой схеме в качестве реактора может быть использован аппарат, снабженный эффективным переценивающим устройством, а также рубашкой и змеевиками для охлаждения.

Для установок большей производительности целесообразнее непрерывная схема процесса. В этом случае легче поддерживать оптимальные температуру и концентрации реагентов путем проведения процесса в двух последовательно установленных автоклавах (См. схему Рис.2)


Рис.2 Органическое

При окислении чистыхциклогексанола или циклогексанона, а также их смесей по непрерывной схеме выход адипиновой кислоты может составить более 90% от теоретического при длительности контакта реагентов 10 мин. в каждом реакторе.

Если производительность установки превышает 1 т/ч адипиновой кислоты, рекомендуется применять трубчатые реакторы, у которых поверхность теплообмена велика сравнительно с реакционным объемом, что имеет первостепенное значение при осуществлении реакций с большим выделением тепла. Первый и второй реакторы соединены последовательно (См. схему Рис.3).


Выделение адипиновой кислоты из реакционных растворов может осуществляться периодическим или непрерывным способом. Технологическая схема выделения адипиновой кислоты периодическим способом представленана Рис.4.

Рис.3. Схема установки с двумя трубчатыми реакторами для проведения процесса под давлением 2-5 ат: 1-циркуляционный насос, 2 – реакторы, 3- нагреватель, 4- сепараторы, 5- отдувочная колонна, 6- колонна концентрирования.


Рис.4. Периодическая схема выделения адипиновой кислоты: 1-приемный сборник; 2,8- кристаллизаторы; 3,9- холодильники; 4,7,10 – буферные сборники; 5,11 –центрифуги; 6- сборник-растворитель; 12- сушильный барабан.

Для получения адипиновой кислоты высокого качества раствор адипиновой кислоты перед перекристаллизацией обрабатывают активированным углем осветляющим марки А. Данный процесс выделения адипиновой кислоты малопроизводителен и может быть использован в производствах небольшой мощности. Главная причина, которая ограничивает производительность процесса, является периодичность основных технологических стадий и техническое несовершенство аппаратуры, применяемой в процессе кристаллизации. При кристаллизации данным способом суспензия содержит кристаллы разной величины, для полного выделения которых малопригодны высокопроизводительные центрифуги, поэтому отделение кристаллов в большинстве случаев приходится производить на фильтрах. Кроме того обильное отложение кристаллов на стенках кристаллизаторов препятствует интенсивному теплообмену. И чтобы уменьшить осаждение кристаллов и улучшить условия теплообмена, приходится осуществлять интенсивную циркуляцию раствора с линейной скоростью около 3 м/сек. Однако при такой скорости циркуляции происходит дополнительное механическое измельчение кристаллов. Все эти обстоятельства усложняют механизацию и автоматизацию процесса и вызывают необходимость применения малопроизводительного ручного труда. Вследствие этого использование периодического способа выделения адипиновой кислоты для крупнотоннажных производств нецелесообразно.