lк=qк/(t1-t2)/x=CpGx (VII)
а суммарная теплопроводность слоя при наличии конвекции равна:
lэ=lоэ+lк (VIII)
В рассматриваемом случае естественная конвекция в слое вызвана различием плотности газа за пределами слоя при t2 и средней плотности в слое при температуре 0.5(t1+t2).
Dr=0.5rbtDt (IX)
где bt - коэффициент объемного расширения газа; Dt=t1-t2.
где С=e3/a2K - коэффициент проницаемости слоя, зависящий от его структуры.
Здесь:
- критерий Грасгофа, отнесенный к разнице температур в слое; в качестве определяющего размера принята высота слоя;
- критерий Прандтля для газовой среды;
- критерий Релея для зернистого слоя.
В отличие от аналогичного критерия GrPr, применяемого для описания естественной конвекции в однофазной среде, а Ra входят два симплекса, отражающие тепловые и гидравлические свойства зернистого слоя.
С учетом принятых обозначений:
j=1+0.5Ra (XIII)
В более общем случае, когда естественная конвекция возникает в замкнутом с торцов зернистом слое, коэффициент в формуле (XIII) должен измениться. Кроме того, нарушение устойчивости газовой среды в слое и начало естественной конвекции должно определяться некоторым критическим значением Ra0, так же, как это имеет место в однофазной среде.
В соответствии с этим формула (XIII) приобретает вид:
j=1+y(Ra-Ra0) (XIV)
Теплопроводность в зернистом слое с движущейся
газовой (жидкой) фазой
Для значительной части технологических процессов в стационарном зернистом слое, протекающих с движением через этот слой газа или жидкости, характерно непостоянство температур в объеме слоя как в пространстве, так и во времени. Поток, проходящий через слой, охлаждается или нагревается через стенки аппарата; при этом в объеме слоя может идти вывделение либо поглощение теплоты - стационарные во времени при проведении реакций, в которых зернистый слой имеет функции катализатора или инертной насадки, и нестационарные в процессах адсорбции, десорбции, сушки и других с участием твердой фазы.
где G - массовая скорость газа; lr и ll - коэффициенты теплопроводности газа по главным осям системы координат перепндикулярно и вдоль оси движения среды. Таким образом , для зернистого слоя с движущейся газовой (жидкой) фазой, как и для неподвижной среды, коэффициент теплопроводности определяет интенсивность выравнивания температур в некоторой квазигомогенной среде.
От такой трактовки зернистого слоя приходится в некоторых случаях отказываться, например, при движении потока теплоты навстречу потоку газа и при нестационарном нагревании или охлаждении слоя потоком газа (подробнее эти случаи будут рассмотрены ниже).
В соответствии с аналогией тепло- и массопереноса, перенос теплоты в движущейся через зернистый слой среде подчиняется тем же закономерностям, что и транспорт вещества. Однако то обстоятельство, что теплота в зернистом слое в отличие от вещества распространяется как через жидкую, так и через твердую фазу, приводит к существенному нарушению подобия коэффициентов диффузии и теплопроводности в области малых критериев Рейнольдса. Так, при Reэ<20 составляющая переноса теплоты за счет процессов молекулярной теплопроводности обеих фаз на порядок больше, чем конвективная составляющая.
Величина l0 представляет собой сумму всех компонентов теплопереноса, не зависящих от u (скорости потока). Существенным составляющим в нее входит теплоперенос при неподвижной среде в слое lоэ. При возникновении естественной конвекции, этот компонент теплопереноса также необходимо учитывать.
Вводя критерии Рейнольдса и Прандтля, зависимость (XVI) можно преобразовать к безразмерному виду:
lr/lг = l0/lг + В Reэ Pr (XVII)
где В = В0 6 (1-e)/4F.
В таком виде зависимость для теплопроводности в зернистом слое предложена в работах многих исследователей. Величины l0 и B могут быть определены из эксперимента.
где Nu=ad/lг, а a - коэффициент теплообмена между зернами и газом текущим через слой.
Методы определения коэффициентов теплопроводности в зернистом слое с движущейся газовой (жидкой) фазой
Опубликовано значительное число работ по определению коэффициентом теплопроводности в зернистом слое с принудительной конвекцией газа. Можно выделить несколько типовых методов определения коэффициентов теплопроводности, использованных в этих работах:
Его решение можно представить так: mº-d(lnt)/dx=CPG/ll
Величину ll определяют по графику температуры в слое, построенном в полулогарифмических координатах. Модификация описанного метода-создание спутных потоков теплоты и газа при использовании торцевого холодильника вместо нагревателя.
Эксперимент можно осуществить только в области малых значений Reэ: при больших скоростях газа необходим источник теплоты высокой интенсивности, что может исказить одномерный поток ее. Кроме того, при больших скоростях газа зона теплового влияния источника соизмерима с размером зерна, и принятая квазигомогенная модель слоя нарушается.
где Q - общее количество теплоты, передаваемое через слой; L - высота слоя; t1 и t2 - температуры слоя на расстояниях от оси r1 r2.
III. Совместное определение радиального и продольного коэффициентов теплопроводности в зернистом слое. Определение lr и ll проводят по результатам измерения температур в трубе с зернистым слоем, охлаждаемой снаружи, при параллельном и встречном направлении потоков тепла и газа. В торце цилиндрического аппарата помещен электронагреватель, создающий равномерный тепловой поток. Стенки аппарата охлаждаются интесивным потоком воды. В зернистом слое создается двумерное температурное поле. Каждый опыт проводят при двух направлениях потока газа, имеющего одинаковую скорость.
Практическая часть. Задачи по теплопроводности.
1. Для определения коэффициента теплопроводности сыра методом пластины (см. рис.1.) через слой продукта, имеющего форму диска диаметром 150 мм, толщиной 12 мм, направляют тепловой поток Q=14.8 ккал/час.