Смекни!
smekni.com

Химическая термодинамика (стр. 2 из 4)

Как известно, при химической реакции внутренняя энергия из­меняется: если энергия выделяется, то это соответствует умень­шению запаса внутренней энергии, и наоборот. Поэтому тепловой эффект и изменение внутренний энергии имеют обратные знаки:

U = -Qv. (5)

2.Изобарический процесс: р = const. В этом случае по закону Гей-Люссака v/T= const. Кроме того, из уравнения (3) не выпадают отдельные члены, так как при постоянном давлении расширение и сжатие газа возможно, как и нагревание и охлажде­ние. В этом случае dQ=dU+pdv. После интегрирования в пределах 1—2 получим:

Выражение в скобках (U + pv) представляет собой термодина­мическую функцию, которую назовем энтальпией Н:

H=U+pv. (6)

Энтальпия — это энергосодержание системы, включающее внут­реннюю энергию и работу. Тогда

(7)

Если система поглощает энергиюQ1-2, то ΔН больше нуля, и если в этой системе происходит химическая реакция, то она будет эндотермической:

(8)

Так как в дальнейшем мы будем использовать понятие разности энтальпий химической реакции, то необходимо помнить соотно­шение:

Экзотермические реакции Эндотермические реакции
ΔH<0; Qp>0
ΔH>0; Qp<0

Разность энтальпий химической реакций обратно по знаку теп­ловому эффекту реакции при постоянном давлении. Для вычисления энтальпии исходим из соображений, чтоQ = ΔH; приравниваем частные производные по температуре:

(9)

или d(ΔН)=CpdТ, где Ср—теплоемкость при постоянном давле­нии. При расчете ΔН следует учитывать не только изменение энер­госодержания системы в зависимости от температуры, но и из­менение агрегатных и полиморфных состояний, при котором происходит поглощение энергии при постоянной температуре:

(10)

Таким образом, энтальпия — сложная математическая функция, оп­ределяющая энергию, необходимую для приведения системы в дан­ное состояние, и учитывающая изменение внутренней энергии и совершаемую работу.

На рисунке приведены кривые зависимости энтальпии от темпе­ратуры для газов, используемых как плазмообразователи в плазмотронах.Для исследования процессов, происходящих в материальных си­стемах, мы пользуемся не абсолютными значениями энтальпий, а их изменением (разностью) между начальным и конечным состояниями системы. Разности энтальпий мы можем измерять с любой степенью точности, отсчитывая энтальпии не от абсолютного

нуля, а, от любого, но всегда одного и того же уровня. За такой уровень приняты стандартные условия: Т=298,15 К, р=1,013∙105Па.

Кроме того, для термохимических расчетов приняты следующие два условия:

1. Разность энтальпий простых веществ (ΔН0) в состоянии, устойчивом при стандартных условиях, принимается равной нулю. Например:

, но
(так как для образования атомар­ного водорода при стандартных условиях надо затратить энергию диссоциации, равную 217,9 кДж/моль).

2. Разность энтальпий сложного вещества обратна по знаку и равна тепловому эффекту при постоянном давлении (

) реак­ции его образования из простых веществ в состоянии, устойчивой при стандартных условиях, т.е. энтальпии образования. Например:
¾ 241,8 кДж/моль;
+ 90,37 кДж/моль.

В настоящее время стандартные разности энтальпий (ΔН0) и их зависимости от температуры (

) можно найти в справочной литературе для очень большого числа неорганиче­ских и органических соединений.

Термохимические расчеты с использованием табличных данных значительно упростились. Рассмотрим пример расчета разности энтальпий химической реакции в общем виде для уравнения

aA+bB=cC+dD

где А, В, С, D — символы реагирующих веществ: а, Ь, с, d — стехиометрические коэффициенты.

Исходные вещества (аА+bВ) соответствуют начальному состоя­нию системы, и сумма их энтальпий вычитается, так как они в ре­зультате процесса исчезают, конечные продукты (cC+dD), состав­ляющие конечную систему, появляются в процессе, и их энтальпии входят со знаком плюс. Если данное вещество в уравнение хими­ческой реакции входит с коэффициентом, отличным от единицы, то при суммировании энтальпий эти коэффициенты надо взять как множители.

Во избежание возможных ошибок надо суммирование энтальпий производить непосредственно под уравнением химической реакции

aA+bB=cC+dD

Подставляя значения энтальпий из справочной литературы, нахо­дим

реакции.

Чтобы получить разность энтальпий реакций для более высоких температур, чем стандартные, используют зависимость разности энтальпий от температуры и учитывают при этом изменения энер­гии, потребной для нагрева данных веществ и для изменения ихфазовых состояний:

(11)

Для многих веществ эти функции рассчитаны и приведены в справочных таблицах (ΔНT ¾Н0).

Если абсолютное значение разности энтальпий реакций доста­точно велико (300—400 кДж), то в первом приближении темпера­турной зависимостью можно пренебречь, так как теплоемкости из­меряются в Дж/(моль∙К), а разности энтальпий—в кДж/моль, т.е. на 3 порядка выше.

Для органических соединений в справочных таблицах часто при­водится разность энтальпий горения этих веществ, рассчитанная для случая образования жидкой воды, так как обычно определения производятся в калориметрических бомбах, охлаждаемых по окончании опыта до комнатной температуры.

Зная разность энтальпий сгорания, легко определить разностьэнтальпий образования органического вещества. Схема расчета приведена для общего случая горения органического вещества:

Отсюда

Атомы других элементов (Cl, N, S и т.д.), входящие в состав органической молекулы, при горении выделяются в молекулярном виде или в виде устойчивых оксидов (SO2, P2O5), так как горение происходит в атмосфере кислорода (3∙105 Па).

ЭЛЕМЕНТЫ ВТОРОГО НАЧАЛА ТЕРМОДИНАМИКИ

Первое начало термодинамики — закон сохранения энергии — рас­сматривает уже свершившиеся процессы, но не указывает направление процесса химической реакции, ее возмож­ность и полноту протекания, а это представляет собой основную задачу при исследовании любого процесса, особенно высокотемпературного.

Так, например, водород и кислород, соединяясь со взрывом, при обычных температурах образуют воду, при высоких температу­рах реагируют обратимо, а при температуре выше 4000 К существование водяного пара практически невозможно. Таким образом,разность энтальпий реакции еще не определяет возможности ее протекания в данных конкретных физических условиях.

Изменение химической энергии зависит от условий, поэтому раз­витие химических реакций, как и всех остальных процессов, на­пример тепловых, определяется вторым началом термодинамики. Согласно второму началу термодинамики (сформулированному в окончательной форме Клаузиусом и Гельмгольцем в середине XIX в.) теплота может переходить в работу только при нали­чии разности температур и не целиком, а с определен­ным термическим коэффициентом полезного действия (η):

(12)

где A — работа, полученная за счет перехода теплоты от тела с вы­сокой температурой (Т1) к телу с низкой температурой (Т2);Q1 — теплота, взятая у нагретого тела с температуройТ1;Q2 — теплота, отданная холодному телу с температуройТ2.

Учитывая, что температура выражена в абсолютной шкале, мы видим, что КПД тепловых машин вообще невелик. Например, КПД теплоэлектроцентрали, работающей с перегревом пара до 673 Кис конденсатором при Т2 =323 К

или 52%

(И это без учета всех остальных потерь в рабочем цикле турбин и механических потерь!)

Таким образом, для любых процессов, протекающих под дей­ствием разности потенциалов (grad P), каковой для тепловых про­цессов является разность температур, для элект­рических — разность потенциалов, для механи­ческих — разность высот и т.д., общим является сравнительно низкий коэффициент полезного действия. Значение КПД обращается в единицу, если в уравнении (12) Т2

0, но абсолютный нуль недостижим. Следовательно, всю энергию нагретого тела при температуре Т1, в работу превратить нельзя.