Быстрое начало и прекращение отдельных процессов прерывистого трещинообразования производит на металл сильное механическое воздействие, что может вызвать дальнейшее развитие и разветвление трещины. Развитие трещины приостановится, когда она достигнет области, где нет достаточных растягивающих напряжений, направление которых перпендикулярно направлению развития трещины. Следовательно, для последующего развития трещины необходима дальнейшая деформация. Большие трещины обладают способностью развиваться быстрее, чем мелкие. По мере роста мелких трещин крупные трещины развиваются значительно быстрее, и вскоре начинает преобладать только одна трещина, которая останавливает развитие других. Характер развития трещин в пластичных металлах обеспечивает возникновение ряда быстро развивающихся трещин, так как новые трещины образуются по ходу .продвижения основной трещины и соединяются с ней. Когда энергия деформации, выделяющаяся при развитии основной трещины, становится равной работе деформации, происходит процесс быстрого саморастрескивания. В эту главу не входит подробное обсуждение работ Ирвина и Орована об относительном равновесии между совершённой работой и энергией, освобождающейся при развитии трещины. Следует указать, что если энергия деформации, выделяющаяся при развитии трещины, больше энергии, необходимой для нового разрушения поверхности, трещина будет развиваться самопроизвольно. Ирвин также показал, что скорость развития трещины будет увеличиваться до тех пор, пока не будет достигнуто неустойчивое состояние, после чего произойдет быстрое разрушение.
Изложенное рассмотрение процесса возникновения и развития трещины более точно характеризует природу коррозионного растрескивания. На прерывистый характер развития трещин указываютЭделеану, Джильберт и Хадден, Фармери для алюминиевых сплавов, а также Преет, Бек и Фонтана для магниевых сплавов. Очевидно, нет сомнения, что при растрескивании материал подвергается серии отдельных механических разрушений, которые, соединяясь вместе, образуют трещину. Кроме того, фильмы и микрофотографии, имеющиеся в литературе, показывают, что растрескивание происходитпутем продвижения развивающейся трещины. Можно ожидать, что изложенный механико-электрохимический механизм коррозионного растрескивания может достаточно точно объяснить наблюдаемые явления процесса коррозионного растрескивания, среди которых основными являются следующие:
1. Трещины не возникают и не развиваются под действием сжимающих напряжений.
2. Более высокие напряжения, особенно напряжения, близкие к пределу текучести, вызывают более высокую концентрацию напряжений и соответственно уменьшают устойчивость металла против растрескивания.
3. Для создания достаточной концентрации напряжений и последующей деформации необходим какой-то минимум напряжений, тот минимальный предел напряжений не является абсолютной величиной и зависит от формы образца и условий испытания. Следует также указать, что предел упругости или текучести на отдельных микроскопических участках может быть значительно ниже, чем текучесть сплава.
4. В том случае, когда разрушение металла происходит почти сразу после образования первоначальной трещины, время до растрескивания зависит от времени, необходимого для зарождения мелких коррозионных трещин. Важным фактором является также состояние поверхности. При разрушении, включающем ряд повторных циклов процесса растрескивания, общее время до разрушения определяется как суммарное время образования серии коррозионных трещин. Не наблюдается значительного отличия во времени до разрушения образцов, нагруженных в течение всего испытания, и образцов, нагруженных незадолго до разрушения; время, необходимое для коррозионного растрескивания, не зависит существенно от условий создания напряженного состояния металла.
5. Доказательством того, что наибольшее влияние приложенные напряжения оказывают незадолго до разрушения, служит самопроизвольное растрескивание металла после зарождения первоначальной трещины. Если процесс растрескивания происходит за счет образования серии мелких трещин и по мере развития трещины металл приближается к неустойчивому состоянию, то при наличии деформированных участков металлапроизойдет самопроизвольное развитие трещины и полное разрушение металла.
6. Катодная защита препятствует развитию локальных коррозионных разрушений. При наложении катодного тока увеличиваются радиусы возникающих коррозионных углублений, в результате чего коррозионный процесс может происходить только при увеличении напряжений. Поэтому для предотвращения коррозионного растрескивания при повышенных напряжениях должна применяться более эффективная защита, которая будет препятствовать возникновению локальных коррозионных разрушений и созданию концентраторов напряжений.
Полагают, что если развитие трещины достигнет такого значения, что создаются условия для самопроизвольного растрескивания, то применение катодной защиты не окажет никакого влияния.
7. Если время до растрескивания относительно мало и развивается только одна или несколько трещин, то не наблюдается существенного отличия в коррозии (в количестве металла, переходящего в раствор) напряженных и ненапряженных образцов, как показал, например, Эделеану для сплава А1—7% Мg, так как развитие трещин идет практически только за счет механического разрушения. С другой стороны, процесс химического разрушения приводит к переходу в раствор измеримого количества металла, но переход металла в раствор не будет существенно зависеть от времени до разрушения.
8. Предложенный механизм растрескивания согласуется с наблюдаемым явлением, обнаруживающим одинаковую скорость развития образовавшихся трещин в материале, подверженном коррозионному растрескиванию, и в сравнительно устойчивом материале. Зависимость устойчивости металла против коррозионного растрескивания от его структуры и коррозионной среды в значительно мольшей степени проявляется в первый период зарождения локального разрушения, чем при последующей стадии развития трещин.
9. Чем меньше размер зерна металла, тем больше его устойчивость против коррозионного растрескивания. При увеличении размера зерна уменьшается время до разрушения. Казалось бы, что чем больше число зерен, тем больше число границ зерен, имеющих высокую электрохимическую активность, в результате чего более вероятен процесс локального коррозионного разрушения; однако при мелкозернистой структуре условия для зарождения трещин довольно неблагоприятные. Доказано, что сопротивлениехрупкому разрушению поликристаллических металлов обратно пропорционально квадратному корню размера зерна. Следовательно, для разрушения мелкозернистого поликристаллического материала требуются повышенные напряжения. Поэтому крупнозернистые металлы с благоприятной ориентацией границ зерен очень неустойчивы против коррозионного растрескивания.
В случае межкристаллитного растрескивания большое значение имеет выделение растворенных атомов по границам зерен, так как предполагается, что адсорбция растворенных атомов по границам зерен уменьшает энергию границ зерен и снижает напряжения, необходимые для того, чтобы вызвать хрупкое разрушение (т. е. снижает работу, необходимую для образования новой поверхности). Любой адсорбционный процесс на участках металла с несовершенной структурой, который уменьшает работу, необходимую для образования новой поверхности, значительно увеличивает тенденцию таких участков к трещинообразованию при наличии напряжений.
Очевидно, следует предположить, что хрупкое межкристаллитное растрескивание сплавов вызвано содержанием по границам зерен интерметаллических фаз; в этом случае существуют очень благоприятные условия для развития по границам зерен местной коррозии, а развитие хрупкого разрушения происходит за счет интерметаллической фазы. Для однородных твердых растворов, в которых имеет место межкристаллитное растрескивание (например, в а-латуни), определяющим фактором является адсорбция или выделение растворенных атомов по границам зерен.
12 Общие закономерности явления коррозийного растрескивания
Вполне очевидно, что сплавы, основу которых составляют благородные металлы, являются наиболее устойчивыми против коррозионного растрескивания, так как легирующие компоненты таких сплавов всегда менее благородий. Кроме того, для таких сплавов ограничено число коррозионных сред, в которых может происходить растрескивание. С другой стороны, для такого очень активного металла, как магний, все легирующие компоненты более благородны, поэтому магниевые сплавы сильно подвержены коррозионному растрескиванию. Для магния даже вода является активной коррозионной средой.
Среди специальных групп сплавов, не подверженных коррозионному растрескиванию, можно отметить сплавы золота, палладия и платины.
Однако для сплавов серебра условия для коррозионного растрескивания более благоприятны. Во-первых, серебро часто используется в виде сплава с более благородными металлами, такими, как золото, палладий и платина; во-вторых, серебро быстро вступает .в реакцию с сильными окислителями, такими, как азотная и хромовая кислоты, а также с соляной кислотой и хлорным железом. Предел устойчивости для этих сред лежит примерно при 40 ат. % Аu, так что коррозионное растрескивание будет иметь место во всех сплавах с золотом, содержащих менее 58,5 вес. % золота. В связис этим имеются многочисленные примеры коррозионного растрескивания сплавов серебра, содержащих золото и палладий, применяющихся в зубоврачебном деле. Коррозионное растрескивание этих сплавов наблюдалось после очистки их в соляной кислоте в процессе производства. С другой стороны, сплавы серебра, содержащие менее благородные компоненты, не подвержены коррозионному растрескиванию. Это подтвердилось при испытании однородных сплавов системы Аu—Zn, содержащих 25 ат. % Zn, и сплавов системы Ag—А1, содержащих 13 ат. % А1. Образцы из этих сплавов, испытываемые под напряжением в 2%-ном растворе FeС3, не подвергались коррозионному растрескиванию даже в течение продолжительного времени испытания.