Смекни!
smekni.com

Очистка от пестицидов   (стр. 1 из 3)

Министерство общего и профессионального образования Российской Федерации

САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им.Н.Г.Чернышевского

Кафедра технической химии и катализа

Р Е Ф Е Р А Т

ОЧИСТКА ОТ ПЕСТИЦИДОВ

Выполнил:

Саратов -1998-

С О Д Е Р Ж А Н И Е

Введение......................................3

1.Пути поступления пестицидов.................4

2.Основные классы пестицидных препаратов......5

3.Основные методы анализа обьектов окружающей среды содержащих пестициды.................11

4.Химические основы обезвреживания природных обьектов от пестицидов.....................

5.Технологические схемы обезвреживания пестицидов ...............................

Заключение...................................

Список литературы............................

Приложение...................................

1.4

В В Е Д Е Н И Е

Пестициды (ядохимикаты) - химические препараты для защиты сельскохозяйственной продукции, растений, для уничтожения парази­тов у животных, для борьбы с переносчиками опасных заболеваний и т.п.

За последние десятилетия число различных типов пестицидов сильно возросло, только в США их количество достигло 900. По дан­ным А.В. Яблокова (1988), в нашей стране в 1986г. было применено пестицидов в среднем около 2 кг на 1 га (примерно на 87% пашни) или около 1,4 кг на душу населения, а в США 1,6 кг на 1 га (на 61% пашни) или 1,5 кг на душу населения.

Пестициды распространяются на большие пространства, весь­ма удаленные от мест их применения. Многие из них могут сохра­няться в почвах достаточно долго (период полураспада ДДТ в воде оценивается в 10 лет, а для диэлдрина он превышает 20 лет). При использовании даже наименее летучих компонентов более 50% актив­ных веществ в момент воздействия переходят прямо в атмосферу, а для таких пестицидов, как ДДТ и диэлдрин, характерна дистилляция с парами воды на земной поверхности. Эта часть пестицидов, не достигших растений, подхватывается ветром и осаждается в районах суши или океана, весьма удаленных от зон применения вещества. Они в конечном итоге попадают в различные экосистемы, включая океан, пресноводные водоемы, наземные биомы и др., в значительных коли­чествах накапливаются в почвах и увеличивают свои концентрации при движении по трофическим цепям.

Пестициды широко используются в сельском и лесном хозяйстве, для регулирования роста растений и зашиты их от различных вреди­телей и болезней, удаления сорной растительности, сохранения за­паса зерна, защиты животных от экопаразитов, уничтожения перенос­чиков инфекционных заболеваний человека и животных, а также в ря­де отраслей промышленности для борьбы с вредными организмами, на­рушающими течение технологических процессов.

Наиболее распространенными группами пестицидов являются: гербециды, применяющиеся для борьбы с сорными растениями, главным образом в злаковых культурах; инсекцициды - для уничтожения вред­ных насекомых в культурах хлопчатника, кукурузы, риса и др.; фун­гициды - для борьбы с болезнями растений.

В результате циркуляции пестицидов в окружающей среде они присутствуют в атмосфере, почве, растениях и воде.


.5 1. Пути поступления пистицидов

Поступление пестицидов в почву помимо прямого внесения их или с протравленным ими зерном, связано с поливом растений и сто­ком осадков с поверхности растений, сносом препаратов при авиаоб­работке полей, лесных угодий и т.д.

В результуте протекающих в почве химических и биологических процессов содержание пестицидов в ней обычно уменьшается, тем не менее остаточные количества их колеблется от сотых долей до де­сятков микрограммов в 1 кг.

Возможность накопления пестицидов в почве определяется усло­виями их применения (нормами расхода, кратностью обработки), ста­бильностью и растворимостью препаратов, типом почвы, ее рН, тем­пературой и влажностью, условиями вымывания, инактивирующим дейс­твием растений, глубиной проникновения и т.д.

Наименее устойчивы пестициды в опесчаниных почвах, наиболее устойчивы в почвах с большим содержанием глины, органических ве­ществ, ионов железа, алюминия и марганца.

Находясь в почве, пестициды подвергаются действию абиотичес­ких факторов (света, воздуха, воды), существенную роль в их раз­ложении играют микроорганизмы. В процессах гидролиза, окисления, демитилирования и других пестициды разлагаются, иногда с образо­ванием токсичных продуктов.

Для предотвращения накопления пестицидов в почве прибегают к увеличению интервала времени между их введением и сбором урожая, к уменьшению кратности обработки, снижению расходов препаратов путем добавки утежилителей, препятствующих их сносу за зону обра­ботки, упорядочиванию хранения и транспортировки пестицидов. Все это уменьшает, однако не исключает возможность загрезнения почвы.

Загрезнение поверхности водоемов происходит несколькими пу­тями. Пестициды могут попадать в воду при смыве с почвенного пок­рова и растений, при сносе волны препарата, в процессе аэрообра­ботки, при неправильной технологии опрыскивания и опыления, за счет поступления загрезненных ими грунтовых вод в районах орошае­мого земледелия, при попадании воды, фильтрующихся из ороситель­ных систем, и наконец в результате вымывания пестицидов из почвы.

Масштаб выноса пестицидов определяется количеством, способом и временем внесения препаратов в почву, их растворимостью, устой­чивостью к разложению, способностью сорбироваться почвой и мигри-

ровать по ее профилю, интенсивностью эрозионных процессов, типом

почв, рельефом местности, обьемом и интенсивностью выпадения

осадков и т.д.

Помимо описанных путей загрезнения, по существу не поддаю­щихся регулированию, пестициды могут поступать в водоемы целенап­равленно - для уничтожени сорной растительности и насекомых, а также со сточными водами производящих или использующих их предп­риятий, в частности тепличных хозяйств.

2. Основные классы пестицидных препаратов

В качестве пестицидов в народном хозяйстве используются раз­нообразные классы органических веществ. Наиболее известными из них являются следующие;фосфороорганические соединения, производ­ные карбаминовых кислот, нитропроизводные фенола, производные мо­чевины, хлорорганические соединения, арилоксиалкилкарбоновые кис­лоты и их производные, азотсодержащие гетероциклические соедине­ния.

2.1 Фосфорорганические соединения

Фосфороорганические соединения широко используют в народном хозяйстве в качестве активных инсектецидов, акарицидов, дефолиан­тов, гербецидов и др. Этому способствует не только широкий чпектр пестицидного действия, но и относительно малая стабильность этих соединений во внешней среде.

Несмотря на низкую стабильность фосфороорганических пестици­дов, время пребывания их в воде может оказатся вполне достаточным для поступления неразложившихся препаратов в обрабатываемую из водосточных сооружений воду. Лимитируются фосфороорганические пестициды в воде по органолептическому признаку вредности, и зна­чения ПДК состовляют 0,1-0,003 мг/дм3, что во много раз ниже ко­личеств, допускаемых по токсикологическому признаку. В болишинс­тве случаев фосфороорганические пестициды представляют собой жид­кие или кристаллические вещества, хорошо растворимые в воде и многих органических растворителях. Все они летучи и термически устойчивы.

Общее строение фосфорорганических веществ, обладающих био­логической активностью и используемых в качестве пестицидов, выг-

лядит следующим образом:

RO O(S)

PO-X

RO

Нарушение такой структуры обычно ведет к потере биологичес­кой активности. В качестве наиболее известных соединений этого ряда можно представить следующие:

Паратион

Параоксон

Диазинон

Актеллик

2.2 Производные карбаминовых кислот

Производные карбаминовых кислот по маштабам производства в ряду пестицидов занимают второе место, уступая только фосфороор­ганическим соединениям. Карбамины являются биологически активными веществами, отрицательно влияющими на здоровье человека. Некото­рые эфиры арилалкилкарбаминовых кислот обладают выраженными эмб­риотоксичными и мутагенными свойствами для теплокровных животных. Присутствуя в водоемах, карбаматы ухудшают качество воды, в связи с чем содержание их санитарными нормами ограничевается до 0,1 мг/дм3.

В соответствии с химическим строением производных карбамино­вых кислот (карбаматов) их подразделяют на несколько групп:

1. Ариловые эфиры N-алкилкарбаминовой кислоты

O H(Alk) Ar-O-C-N

Alk

2. Алкиловые эфиры N-арилкарбаминовой кислоты

O H(Ar)

Alk-O-C-N

Ar

3. Эфиры тиолкарбаминовой кислоты

O H(R1) R-S-C-N

R1

4.Эфиры дитиокарбаминовых кислот

S H(R1) R-S-C-N

R1

5.Соли замещенных дитиокарбаминовых кислот.

Несмотря на схожесть строения, отдельные группы карбаматов существенно различаются между собой как по химическим, так и по пестицидным свойствам.

2.3 Производные нитрофенола

Впервые нитрофенолы были предложены для борьбыс вредными на-

секомыми еще в прошлом столетии, но своего значения в качестве

химических средств защиты растений не утратили и до настоящего

времени. Пестициды этого класса используют в качестве селективных

контактных гербецидов, инсектецидов, фунгицидов и акарицидов.

Всельсвохозяйственной практике широко применяют 2,4-динитрофенол (ДНФ), 2-метил-4,6-динитрофенол (ДНОК), 2,4-динитро-6-втор-бутил­фенол (диносеб) и другие препараты. Используют также и эфиры ди­нитрофенолов: акрекс [(о-изопропил-о-(2,4-динитро-6-изобутилфе­нол) карбонат], каратан (2,4-динитро-6-втор-октилфенилкротонат), нитрофен (2,4-дихлор-4-нитродифениловый эфир), аретит (6-втор-бу­тил-2,4-динитрофенола ацетат) и др.

Большинство производных нитрофенолов токсичны для гидробио­нитов, теплокровных животных и человека. Характеризуются они по­литропным воздействием, вызывая изменения центральной нервной системы, печени, почек, являются также аллергенами. Динитрофенолы нарушают обмен веществ в клетке, в частности разобщают процессы окислительного фосфолирования с потерей богатых энергии соедине­ний АТФ и др. Эфиры нитрофенолов значительно менее токсичны, не­жели соответствующие свободные нитрофенолы. Так ЛД50 для диносеба и акрекса равны 25-50 и 119-142 мг/кг. Нормируются нитропроизвод­ные фенолов в водоемах хозяйственно-бытового назначения по сани­тарно-токсикологическому признаку вредности. Значение их ПДК сос­товляют от 0,03 до 0,2 мг/дм3.