Смекни!
smekni.com

Очистка от пестицидов   (стр. 2 из 3)

Во внешней среде производные нитрофенола под влиянием раз­личных ферментативных систем быстро превращаются в разнообразные метаболиты, токсичность которых во много раз ниже токсичности ис­ходных препаратов.

2.4 Мочевина и ее производные

Мочевина и ее производные достаточно широко используется в сельском хозяйстве в качестве азотного удобрения и химических средств защиты растений. Мочевина малотоксична и не накапливается в организме, однако способность влиять на качественные показатели воды вынуждает ограничивать ее содержание в воде после обработки. Предельно допустимая концентрация мочевины нормируемая по органо­лептическому признаку, состовляет 10 мг/дм3.

Систематическое исследование пестицидных свойств производных

мочевины показало, что инсектецидные и фунгицидные свойства их

выражены слабо. Большинство соединений этого класса обладают вы­сокой гербецидной активностью, некоторые из них применяют в ка­честве альгицидов и арборицидов.

Важнейшую группу этого класса соединений состовляют

N-арил-N,N-диалкилмочевины, содержащие в фенолтном остатке не бо­лее двух функциональных групп. По своей практической значимости они занимают ведущее место среди гербецидных препаратов, исполь­зуемых в народном хозяйстве.

Гербецидные мочевины обладают малой и средней токсичностью (ЛД50>1000 мг/кг), кумулятивные свойства их выражены слабо, меха­низм токсического действия обусловлен ингибированием фотосинтеза и других процессов, связанных с превращением энергии в растениях.

2.5 Хлорорганические соединения

Хлорорганические пестициды (ХОП) применяют в сельском хо­зяйстве в качестве активных инсектецидов, акарицидов и фумигантов в борьбе с вредителями зерновых и технических культур. Их исполь­зуют также для обработки семян, фумигации почв, помещений складов и тепличных хозяйств. По химической природе соединения этого класса представляют собой хлорпроизводные ароматических углеводо­родов (гексахлорбензол, ДДТ и его аналоги, метоксихлор и др.), циклопарафинов (гексахлорциклогексан и его аналоги), терпенов (полихлоркамфен, полихлорпинен и др.). Широкое применение всель­ском хозяйстве и промышленности получили полициклические инсекти­циды - производные би-,три- и тетрациклических углеводородов (хлордан, гептахлор, дилор, альдрин, дильдрин и др.). Больштнство хоп плохо рпстворимы в воде, но хорошо в орагнических растворите­лях, в том числе в жирах. Согласно гигиенической классификации их относят к стойким и очень стойким пестицидам.

2.6 Арилоксиалкилкарбоновые кислоты и их производные

Широко используют в качестве гербецидов, альгицидов и регу­ляторов роста растений арилоксиалкилкарбоновые кислоты (ААКК), среди которых большое распространение получили такие препараты, как 2,4-дихлорфеноксиуксусная кислота (2.4-Д) и ее производные,

2,4-дихлорфеноксипропионовая кислота (2,4-ДП) и ее производные, 2-метил-4-хлорфеноксиуксусная кислота (2М-4Х), 2,4,5-трихлорфе­ноксиуксусная кислота (2,4,5-Т) и ее производные и др.

Изучена их биологическая активность и установлена взаимос­вязь между строением кислот и их пестицидной активностью. Отмече­но резкое повышение физиологической активности феноксиуксусной кислоты при ведении в ее молекулу атомов галогена, положение ко­торых оказывает существенное влияние на этот показатель.

Многие промышленные препараты гербецидов представляют собой не свободные ААКК, а их соли (с металлами или аминами) или эфиры. Последние являются более сильными гербецидами, чем соответствую­щие свободные кислоты и их соли. Из большого числа эфиров 2,4-Д практическое применение нашли этиловый, бутиловый, амиловый, геп­тиловый, октиловый, полипропилен- и полиэтиленгликолевые и др.

Больштнство гербецидов группы ААКК среднетоксичны, их ЛД50 для крыс находится в пределах от 375 до 100 мг/кг. Действие этих пестицидов на качество воды проявляется главным образом в ухудше­нии ее вкуса и запаха, связанных с присутствием в товарных препа­ратах примесей фенолов. Предельно допустимые концентрации ААКК составляют до 1 мг/дм3.

2.7 Азотсодержащие гетероциклические соединения

К этой группе пестицидов относят многие органические вещест­ва, из которых наиболее широкое применение получили пяти- и шес­тичленные гетероциклы с одним, двумя и тремя атомами азота в цик­ле. Это производные пиридина, пирадазина и пиримидина, симм-триа­зина и др. В ряде случаев гетероциклические остатки входят в сос­тав препаратов и других классов пестицидов (диазинос, сайфос и др.).

Широкое применение в сельском хозяйстве из пестицидов - про­изводных пиридина получили пиклорам (3,5,6-трихлор-4-аминопиколи­новая кислота), дикват (1,1-этилен-2,2дипиридилий бромид), парак­ват (1,1-диметил-4,4-дипиридилий дихлорид) и др. Пиклорам облада­ет высокими арборицидными свойствами; дикват и паракват использу­ют в качестве десиктантов, гербицидов сплошного действия, водных гербецидов.

В отличие от малотоксичного пиклорама (ЛД50=8200 мг/кг),

дикват и паракват относятся к средне- и высокотоксичным препара­там, значение ЛД50 соответственно равны 231 и 57 мг/кг.

Одну из основных групп используемых гербецидов составляют производные симм-триазина. Гербециды этой группы прредставляют собой диамино-симм-триазины, у которых третий заместитель, свя­занный с гетероциклическим кольцом, является атомом хлора, меток­си- или метилтиогруппой. Общая формула симм-триазинов выглядит следующим образом:

где Х-Cl,OCH3SCH3;R-R-H,Alk.

симм-Триазины малотоксичны для теплокровных животных, при пероральном введении их острая токсичность для крыс состовляет 1400-5000 мг/кг.

3.Основные методы анализа обьектов окружающей среды содержащих пестициды

4.Химические основы обезвреживания природных обьектов от пестицидов

При очистки вод от пестицидов наиболее полно исследованны и используются несколько способов: щелочной и кислотный гидролиз, деструктивное окисление пестицидов и адсорбционные методы.

4.1 Гидролиз пестицидов

Одним из путей очистки воды от пестицидов - эфиров фосфорных

кислот являтся гидролитическое расщепление. Возможность использо­вания химического гидролиза в качестве метода очистки от ФОПопре­деляется главным образом характером образующихся продуктов прев­ращения, степенью устойчивости и токсичности, их влиянием на ор­ганолептику воды. Максимальная устойчивость ФОП наблюдается в кислой среде. С повышением рН скорость гидролиза возростает. Иск­лючение состовляют диазинон, диазоксон, актеллик, для которых ха­рактерна высокая стабильность в нейиральной среде.

Изучение кинетиеи и продуктов гидролиза позволило устано­вить, что щелочной гидролиз ФОП обычно протекает с разрывом связи фосфор-кислород (P-O(S)), в то время, как при кислотном гидролизе происходит преймущественное расщепление углерод-кислородного фрагмента (O(S)-R)).

Для производных карбаминовых кислот - карбаматов наличие эфирной связи обуславливает их гидролиз, продуктом которого явля­ется неустойчивая карбаминовая кислота и оксисоединение. Схема гидролиза фенилкарбаматов на примере хлорпроизводного изопро­пил-N-фенилкарбамата (ИФК) приведена ниже:(стр37)

Образующиеся при гидролизе неустойчивая 3-хлорфенилкарбами­новая кислота быстро разлагается на 3-хлоранилин и оксид углерода (IV). Показано, что скорость гидролитического расщепления карба­матов и характер образующихся соединений определяется в основном химической природой вещества.

В случае гидролиза сложных эфиров динитрофенола кинетика ре­акций была подробно изучена на примере наиболее часто используе­мых представителях этого ряда - акрекса и каратана. Их ПДК, опре­деляемый по санитарному признаку 0,5-0,2 мг/дм3. Показано, что в щелочной среде гидролиз протекает с заметной скоростью (время по­лураспада 9-17 суток), и поэтому он может быть применен в качест-

ве метода, сокращающего и время и дозы реагентов на следующих

этапах очистки воды.

Гидроли мочевины заметно протекает в кислой или щелочной среде при нагревании, в результате которого мочевина разлагается с образованием аммиака и диоксида углерода. Процесс этот рекомен­довандля очистки от мочевины сточных вод.

4.2 Диструктивное окисление пестицидов

Как правило деструктивное окисление соединений связано с участием в реакции сильных окислителей, таких как хлор, озон, пе­рекись водорода и др. Выбор данных соединений обусловлен широтой их использования в народном хозяйстве. Их действие на органичес­кие вещества и в частности на пестициды неоднозначно, однако мож­но выделить некоторые основные моменты позволяющие при выборе технологической схемы предпочтительней использовать тот или иной окислитель сообразуясь как с финансовыми, так и с научно техни­ческими возможностями.

В результате проведенных исследований было установленно, что хлор в качестве реагента для обезвреживания ФОП в воде не предс­тавляет интереса, так как с одними соединениями он не реагирует (хлорофос), с другими (метафос, карбофос) может образовывать ток­сичные соединения.

Исследования выполненные по использованию озона для очистки воды от ФОП показали, что озон является перспективным реагентом для диструкции ФОП, при правильном подборе режима разложения.