Смекни!
smekni.com

Жидкие кристаллы (стр. 3 из 4)

S = 0,5 á( 3cos2q – 1)ñ (2)

где q - угол между осью индивидуальной молекулы жидкого кристалла и преимущественным направлением всего ансамбля, определяемым директором n (рис. 2) (угловые скобки означают усреднение по всем ориентациям молекул). Легко понять, что в полностью разупорядоченной изотропно-жидкой фазе S = 0, а в полностью твердом кристалле S = 1. Параметр порядка жидкого кристалла лежит в пределах от 0 до 1. Именно существование ориентационного порядка обусловливает анизотропию всех физических свойств жидких кристаллов. Так, анизотропная форма молекул каламитиков определяет появление двойного лучепреломления (Dn) и диэлектрической анизотропии (De), величины которых могут быть выражены следующим образом:

Dn|| = n|| – n^иDe|| = e|| – e^ (3)

где n||, n^ и e||, e^ — показатели преломления и диэлектрические постоянные соответственно, измеренные при параллельной и перпендикулярной ориентации длинных осей молекул относительно директора. Значения Dn для ЖК-соединений обычно весьма велики и меняются в широких пределах в зависимости от их химического строения, достигая иногда величины порядка 0,3-0,4. Величина и знак De зависят от соотношения между анизотропией поляризуемости молекулы, величиной постоянного дипольного моментаm, а также от угла между направлением дипольного момента и длинной молекулярной осью. Примеры двух ЖК-соединений, характеризующихся положительной и отрицательной величиной De, приведены ниже:

Нагревание жидкого кристалла, понижая его ориентационный порядок, сопровождается монотонным снижением значений Dn и De, так что в точке исчезновения ЖК-фазы при Тпр анизотропия свойств полностью исчезает.

В то же время именно анизотропия всех физических характеристик жидкого кристалла в сочетании с низкой вязкостью этих соединений и позволяет с высокой легкостью и эффективностью осуществлять ориентацию (и переориентацию) их молекул под действием небольших "возмущающих" факторов (электрические и магнитные поля, механическое напряжение), существенно изменяя их структуру и свойства. Именно поэтому жидкие кристаллы оказались незаменимыми электрооптически-активными средами, на основе которых и было создано новое поколение так называемых ЖК-индикаторов.

4. Как управлять жидкими кристаллами

Основой любого ЖК-индикатора является так называемая электрооптическая ячейка, устройство которой изображено на рис. 5. Две плоские стеклянные пластинки с нанесенным на них прозрачным проводящим слоем из окиси олова или окиси индия, выполняющие роль электродов, разделяются тонкими прокладками из непроводяшего материала (полиэтилен, тефлон). Образовавшийся зазор между пластинками, который колеблется от 5 до 50 мкм (в зависимости от назначения ячейки), заполняется жидким кристаллом, и вся "сандвичевая" конструкция по периметру "запаивается" герметикой или другим изолирующим материалом (рис. 5). Полученная таким образом ячейка может быть помешена между двумя очень тонкими пленочными поляризаторами, плоскости поляризации которых образуют определенный угол с целью наблюдения эффектов ориентации молекул под действием электрического поля. Приложение к тонкому ЖК-слою даже небольшого электрического напряжения (1,53 В) вследствие относительно низкой вязкости и внутреннего трения анизотропной жидкости приводит к изменению ориентации жидкого кристалла. При этом важно подчеркнуть, что электрическое поле воздействует не на отдельные молекулы, а на ориентированные группы молекул (рои или домены), состоящие из десятков тысяч молекул, вследствие чего энергия электростатического взаимодействия значительно превышает энергию теплового движения молекул. В итоге жидкий кристалл стремится повернуться таким образом, чтобы направление максимальной диэлектрической постоянной совпало с направлением электрического поля. А вследствие большой величины двулучепреломления Dn процесс ориентации ведет к резкому изменению структуры и оптических свойств жидкого кристалла.

Впервые воздействие электрических и магнитных полей на жидкие кристаллы было исследовано русским физиком В.К.Фредериксом, и процессы их ориентации получили название электрооптических переходов (или эффектов) фредерикса. Один из трех, наиболее часто встречающихся вариантов ориентации молекул показан на рис. 5. а. Это планарная ориентация, которая характерна для нематиков с отрицательной диэлектрической анизотропией (De< 0), когда длинные оси молекул параллельны стеклянным поверхностям ячейки.

Рис. 5. Электрооптическая ячейка типа "сандвич" с планарной ориентацией молекул (а) и схемы расположения молекул жидких кристаллов в ячейке: б - гомеотропная и в - твист-ориентация. 1 - слой жидкого кристалла. 2 - стеклянные пластинки, 3 - токопроводящий слой, 4 - диэлектрическая прокладка, 5 - поляризатор, 6 - источник электрического напряжения.

Гомеотропная ориентация реализуется для жидких кристаллов с положительной диэлектрической анизотропией (De> 0) (рис. 5, б). В этом случае длинные оси молекул с продольным дипольным моментом располагаются вдоль направления поля перпендикулярно поверхности ячейки. И наконец, возможна твист- или закрученная ориентация молекул (рис. 5, в). Такая ориентация достигается специальной обработкой стеклянных пластинок, при которой длинные оси молекул поворачиваются в направлении от нижнего к верхнему стеклу электрооптической ячейки. Обычно это достигается натиранием стекол в разных направлениях или использованием специальных веществ-ориентантов, задающих направление ориентации молекул.

В основе действия любого ЖК-индикатора лежат структурные перестройки между указанными типами ориентации молекул, которые индуцируются при приложении слабого электрического поля. Рассмотрим, например, как работает ЖК-циферблат электронных часов. Основу циферблата составляет уже знакомая нам электрооптическая ячейка, правда несколько дополненная (рис. 6, а, б). Помимо стекол с напыленными электродами, двух поляризаторов, плоскости поляризации которых противоположны, но совпадают с направлением длинных осей молекул у электродов, добавляется еще располагаюшееся под нижним поляризатором зеркало (на рисунке не показано). Нижний электрод обычно делают сплошным, а верхний - фигурным, состоящим из семи небольших сегментов-электродов, с помощью которых можно изобразить любую цифру или букву (рис. 6, в). Каждый такой сегмент "питается" электричеством и включается согласно заданной программе от миниатюрного генератора. Исходная ориентация нематика закрученная, то есть мы имеем так называемую твист-ориентацию молекул (см. рис. 5, в и 6, а). Свет падает на верхний поляризатор и становится плоскополяризованным в соответствии с его поляризацией.

Рис. 6 Схема работы ЖК-индикатора на твист-эффекте: а — до включения электрического поля, б — после включения поля, в — семисегментной буквенно-цифровой электрод, управляемый электрическим полем.

При отсутствии электрического поля (то есть в выключенном состоянии) свет, "следуя" твист-ориентации нематика, меняет свое направление в соответствии с оптической осью нематика и на выходе будет иметь то же направление поляризации, что и нижний поляризатор (см. рис. 6, а). Другими словами, свет отразится от зеркала, и мы увидим светлый фон. При включении электрического поля для нематического жидкого кристалла с положительной диэлектрической анизотропией (De > 0) произойдет переход от закрученной твист-ориентации к гомеотропной ориентации молекул, то есть длинные оси молекул повернутся в направлении, перпендикулярном к электродам, и спиральная структура разрушится (рис. 6, б). Теперь свет, не изменив направления исходной поляризации, совпадающей с поляризацией верхнего поляризатора, будет иметь направление поляризации, противоположное нижнему поляроиду, а они, как видно на рис. 6, б, находятся в скрещенном положении. В этом случае свет не дойдет до зеркала, и мы увидим темный фон. Другими словами, включая поле, можно рисовать любые темные символы (буквы, цифры) на светлом фоне, используя, например, простую семисегментную систему электродов (рис. 6, в).