Смекни!
smekni.com

Шпаргалка по химии (стр. 1 из 12)

01. Энтальпия и т.д 1. Н2 в природе. Изотопы Н2: протий, дейтерий, тритий. 2. Хим. св-ва Н2 3. Гидриды Ме и Нем, их св-во и получ. 4. Получение и прим. Н2 5. О2. Общ хар-ка 6. Нахожд. О2 в природе. 7. Получ. О2 8. Строение молекулы О2 9. Св-ва О2 10. Озон, его получ. и св-ва 11. Н2О. Распространенность в природе. Значение Н2О в биосфере 12. Строение Н2О и ее физ. св-ва. 13. Н2 – связь в Н2О 14. Хим св-ва Н2О 15. Классифик. природных вод и их водоподготовка. Жесткость Н2О. 16. Н2О2, его строение и получ. Кислотные, окислит. и восстановит. св-ва. 17. Общ характеристика элементов VIIA гр таблицы М (ТМ). СО галогенов. Нахождение в природе. 18. Простые вещ-ва F2, Cl2, Br2, I2. Методы их получения и св-ва. 19. Взаимодействие Г с Н2О и щелочами. 20. Н2 соедин Г и их восстан св-ва 21. Н2-связь в молекуле НF. Структура HF в газовой, жидк и тверд фазах 22. Соединения Г с О2 23. О2 – содержащие к-ты Cl, B, I. Сопоставление их кисл и восстан св-в 24. О2- содержащие к-ты Cl и их св-ва. 25. Дифториды Ме 26. Комплексныес соедин Г-нов. 27. H2S, получ. строение, св-ва. Сульфиды, методы их получ и св-ва. Раст-мость и гидролиз сульфидов. 28. Полусульфиды. Селениды и теллуриды. 29. Применение S, Se, Te и их соедин. 30. Взаимод H2SO4 с Ме. 31. S, Se, Te. Общ хар-ка, нахожд. в прир, получ и св-ва. Аллотропия. 32. Диоксиды S, Se, Te. Получ и св-ва. 33. Соли О2- содерж. кис-т серы. Сульфиты, сульфаты. 34. О2-содерж к-ты S. H2SO3. H2SO4. Дисерная к-та, тиосерная к-та, пероксодисерная. Строение и св-ва 35. Н2 – содеин. N2. Аммиак, гидроксиламин, гидразин. Азотоводородные к-ты. Строение, с-ва, получ. 36. Ох азота. Их получ, св-ва, строен 37. Азотисчтая к-та, ее строение и св-ва. Нитриты и их св-ва 38. Сравнен строен и св-в галогенидов N2, P, As, Sb, Bi. Гидролиз галогенидов. 39. Применение N2 и его соедин. азотные удобрения 40. Р. Общ хар-ка, нахожд в природе. Аллотропия. Красный, белый, черный Р, их св-ва и получ. 41. Общ хар-ка As, Sb, Bi, нахожд в прир. 42. ТриОх S, получ. св-ва, строен. 43. Азотн. к-та. Строен и св-ва. Взаимод Ме с HNO3. Нитраты 44. Н2 – соедин. Р. Фосфин, дифосфин твердые гидриды фосфатов. 45. К-ты as, Sb, Bi, их получ и св-ва. 46. Общ хар-ка э-тов VA гр. СО и типы соедин. 47. Галогениды Р, получ, строение, св-ва. 48. Азот. Общ хар-ка и нахожд в прир. Строение молекул N2. Проблемы связанного азота, его св-ва и получ. 49. Ох Р (3,5). Фосфорные к-ты. Строение, св-ва и получ. 50. Примен Р и его соедин. Фосфорные удобрения 0.1 Внутр энерг характеризует общий запас энергии системы и включает все виды энергии движения и взаимод частиц, но не включает кинет энергию вцелом и пот энергию. Т/д пользуется понятием изменения внутр энергии. ΔU=Uкон-Uнач dU Энтальпия характеризует запас энергии системы при р=const она числено равна: H=U+pV ΔH=ΔU+pΔV dH ΔH=Hкон-Hнач Закон Гесса: Тепловой эффект х.р. зависит только от вида и состояния исходных в-в и кон продуктов. При термохим рассчетах использ термохим у-ия. Т.х. у-ия обязательно должны содержать молярные кол-ва в-в, в правой части должен быть приведен тепловой эффект, должны быть указаны агрегатные состояния в-в, с т.х. у-иями можно производить все алгебраические действия. Энергия Гиббса G=H-TS. DG=DH-TDS. S = Qобр(кол-во теплоты, погл сис-мов в изотермич обратимом проц.)/T 1. H2 широко распространен в природе. Он входит в состав Н2О, глин, каменного и бурого угля, нефти и т.д., а также во все животные и растительные организмы. В свободном состоянии водород встречается крайне редко (в вулканических и др. природных газах). Водород - самый распространенный элемент космоса: он составляет до половины массы Солнца и большинства звезд. Юпитер и Сатурн в основном состоят из водорода. Он присутствует в атмосфере ряда планет, в кометах, газовых туманностях и межзвездном газе. H2 имеет три изотопа с массовыми числами соответственно 1, 2 и 3: 1H p(e) протий, 2D(2H) (p+n)e дейтерий 3T(3H) (p+2n)e тритий. Протий и дейтерий - стабильные изотопы. Нормальный изотопный состав природных соед водорода соответствует отношению D : H = 1 : 6800 (по числу атомов). Тритий - b-радиоактивен, период полураспада T1/2 = 12,26 года. 2. Н2 проявляет и восстановительные, и окислительные свойства. В обыч услблагодаря прочности молекул он сравнительно мало активен и непосредственно взаимодействует лишь со фтором. При нагрев же вступает во взаимодействие с многими неМе - хлором, бромом, кислородом и пр. Восстановительная способность водорода используется для получения некоторых простых веществ из Ох-в и галидов: CuO + H2 = Cu + H2O В кач окислителя водород взаимодействует с активными Ме: 2Na + H2 = 2NaH
51. Угольная к-ты и ее соли. Строен, св-ва и получ. 52. SiO2, строен и св-ва. Кварцевое стекло. 53. С. Общ хар-ка, нахожд в прир. Аллотрпия. 54. Общ хар-ка эл-тов IVA гр. СО эл-тов и типы их соедин 55. Карбиды, их получ и св-ва 56. Стекло и керамика 57. Применен С и его соедин 58-59. Si. Общ хар-ка, нахожд в прир. Получ, св-ва и прим Si. 60. Ge, Sn, Pb. Хаар-р измен. строен и св-в прост выщ-в. Ох и гидрОх Ge, Sn, Pb. 61. Германаты,станнаты и плюмбаты (2,4). Сульфиды Ge, Sn, Pb. 62. Н2 – соедин Si, их получ и св-ва. Силициды Ме. 63. Электролиз расплавово солей и гидрокс ЩеМе 64. Общ хар-ка Ia гр, нахожд в прир, получ. 65. Гидриды щеме, их строен и св-ва 66. Гидриды, Ох и гидрокс щеме, нахожд в прир и получ. 67. Общ хар-ка солей щеме. 68. Хим св-ва и сравнен хим акт щеме 69. Окси и перокс щеме, хим связь в этих соедин и св-ва 70. Хим св-ва и активн Li 71. Гидрокс щеме, их получ и св-ва 72. Примен щеме 73. Строен атомов, закономерн измен Rатом, сродство к е и электроотр в ряду Li, Na, K, Rb, Cs, Fr. 74. Общ хар-ка щеземе, нахожд в прир, получ. 75. Законом. измен св-в Ме и их соедин в ряду Be-Ra 76. Ох, оксогидроксид Ал, их строен, получ и св-ва 77. Особенности Ве и его соедин в ряду щеземе. Токсичность Соедин Ве. 78. Mg, его хим св-ва, раств. солей Mg. 79-80. Хаар-р измен кислотно-осн. св-в однотипн соедин в ряду Be-Ra 81. Амфотерность Be(ОН)3 82. Общая хар-ка солей щеземе, гидролиз солей Ве и магния. 83. B2O3 и Н3ВО3, строение и св-ва 84. Галогениды бора, тетрафторбораты Ме. 85. Бориды, их получ и св-ва. Бороводороды, тх получ. строен. и св-ва. 86. Борогидриды Ме. 87. Прменен. соедин В. 88. Общ хар-ка солей Al, их раств, гидролиз. 89. Квасцы. 90. Общ хар-ка эл-тов IIIa гр. Хаар-ные СО и типы соедин. 91. Нитрид бора, строение и св-ва 92. Гидриды Al, алюмогидриды Ме. 93. Ga, In, Tl, общая хар-ка, нахожд в прир, св-ва и примен 94. Al. Общ хар-ка, нахожд в прир, св-ва и примен. 95. Соединения Tl (I). Токсичность соедин Tl+. 96. Соединен типа АВ. Арсенид индия и антимонил галлия. Примен. 97. Сопоставление св-в B, Al, In, Ga, Tl 98. Примен соедин Al 99. В. Общ хар-ка, нахожд в прир, получ, св-ва и примен. 3. В тех случаях, когда водород выступает в кач окислителя, он ведет себя как галоген, образуя аналогичные галидам гидриды. Однако образование иона H- из молекулы H2 - процесс эндотермический (энтальпия образования H- составляет +150,5 кДж/моль). Поэтому по окислительной активности водород существенно уступает галогенам. По этой же причине ясно выраженный ионный характер проявляют лишь гидриды наиб активных Ме - щелочных и щелочноземельных, например KH и CaH2. К ковалентным отн гидриды менее электроотрицательных, чем сам водород, неМеических элементов. К ковалентным отн, например, гидриды состава SiH4 и BH3. По хим природе гидриды неМе являются кислотными соедми. Различие в хим природе гидридов можно легко установить по их поведению при гидролизе. Характерной особенностью гидролиза гидридов является выделение водорода. Реак протекает по окислительно-восстановительному механизму. Отрицательно поляризованный атом H(-1) в гидриде и положительно поляризованный атом H(+1) в воде переходят в состояние с нулевой СО: KH + HOH = KOH + H2; -----------SiH4 + 3HOH = H2SiO3 + 4H2 За счет выделения водорода гидролиз протекает полностью и необратимо. При этом основные гидриды образуют щелочь, а кислотные - кислоту. В кач амфотерного соед можно рассматривать гидрид Al AlH3, который в зависимости от партнера по реакции может выступать и как донор электронных пар (основное соед), и как акцептор (кислотное соед): AlH3 (основный) + 3BH3 = Al(BH4)3 KH + AlH3(кислотный) = K[AlH4] Стандартный потенциал системы 1/2H2/H- равен -2,23 В. Следовательно, ион H- - один из самых сильных восстановителей. Поэтому ионные, а также комплексные гидриды - сильные восстан-ли. Они находят широкое применение для проведения различных синтезов, для получения водорода и в химическом анализе. Гидрид кальция CaH2 применяется, кроме того, в кач осушителя для удаления следов влаги. Меическими свойствами обладают водородные соед d- и f-элементов. Эти соед получаются в виде Меоподобных темных порошков или хрупкой массы, их электрическая проводимость и теплопроводность типичны для Ме. Это гидриды нестехиометрического состава. Идеализированный состав Меических гидридов чаще всего отвечает формулам MH (VH, NbH, TaH), MH2 (TiH2, ZrH2, HfH2, ScH2) и MH3 (UH3, PaH3). Ме гидриды используются как восстан-ли для получения покрытия из соответственного Меа, а также для получения Ме в виде порошков.
4. Получ Н2 В пром Н2 получают в основном из природных и попутных газов, продуктов газификации топлива (водяного и паровоздушного газов) и коксового газа. В основе производства водорода лежат каталитические реакции взаимодействия с водяным паром (конверсии) соотвнтственно углеводородов (главным образом метана) и Оха (II) углерода, например: CH4 + H2O - 800oC- CO + 3H2 , CO + H2O - 600oC- CO2 + H2 , Водород получают также неполным окислением углеводородов, например: 2CH4 + O2 = 2CO + 4H2 В связи с уменьшением запасов углеводородного сырья большой интерес приобретает метод получения водорода восстановлением водяного пара раскаленным углем: C + H2O = CO + H2 При этом образуется генераторный газ. Затраты энергии на его получ можно скомпенсировать за счет реакции неполного окисления угля: 2C + O2 = 2CO При комбинировании этих двух процессов получается водяной газ, состоящий в основном из смеси H2 и CO. Из главных смесей с большим содержанием водорода его выделяют глубоким охлаждением смеси. Водород производят также электролизом Н2О. В лабораторных условиях водород получают взаимодействием цинка с соляной или серной кислотой. Водород широко используется в хим пром для синтеза. В смеси с CO (в виде водяного газа) применяется как топливо. Жидкий водород - одно из наиб эффективных реактивных топлив. В атомной энергетике для осуществления ядерных реакций большое значение имеют изотопы водорода - тритий и дейтерий. 5. В 1777 году французский химик Антуан Лоран Лавуазье (1743–1794) объяснил процессы дыхания и горения и дал название кислороду – Oxygenium. Природный кислород состоит из трех стабильных изотопов: 16O – 99,76%, 17O – 0,04%, 18O – 0,2%. Кислород входит в состав ДНК и многих органических соед, белков. Содержится в мышечной ткани – 16%, костной ткани – 28,5% и крови человека (в человеческом организме массой 70 кг в среднем содержится 43 кг кислорода). Магнитные свойства кислорода указывают на наличие в молекуле кислорода двух неспаренных электронов. Эти электроны размещаются на разрыхляющихся молекулярных p-обриталях. Это делает эго молекулу бирадикалом. Энергия атомнизации кислорода намного меньше, чем у азота. Это одна из причин большой реакционной способности кислорода. 6. Кислород занимает первое место по распространенности в земной коре – 47,4% (по другим данным 49,13%). А атмосфере состоит из кислорода на – 20,9476%, это около 1015 тонн. В морской воде в связанном и р-ренном виде содержится – 85,94% кислорода. В связанном виде кислород входит в состав более чем 1400 минералов. В связанном виде кислород обнаружен на многих планетах солнечной системы. 10. Озон представляет собой газ светло-синего цвета, с характерным резким запахом, р-римый в воде. Жидкий озон имеет темно-фиолетовый цвет, а твердый сине-черный. Интенсивность цвета жидкого озона настолько велика, что даже через очень тонкий слой жидкости не видно нити горящей электрической лампочки. Интенсивность цвета связана с большей поляризуемостью молекул по сравнению с кислородом. Жидкий озон, запаянный в трубку можно хранить вплоть до критической температуры –12° С. Озон при концентрации в воздухе более 9% взрывоопасен, еще опаснее твердый и жидкий озон. Хранение жидкого озона производят в р-ре в четыреххлористого углерода или фреонов при низких температурах. Температура плавления tпл=-192,5° С [14]; Теплота кипения D Hкип=15193 Дж/моль [14]; Озон является сильнейшим окислителем, окисляет даже золото и платину, и уступает только фтору и фториду кислорода. Действующее начало озона, атомарный кислород: 2KI + O3 + H2O - I2 + 2KOH + O2. Индикатором на озон служит бумага, пропитанная р-ром иодида калия и крахмала, которая синеет в его присутствии. Черный сульфид свинца переходит в белый сульфат в атмосфере озона: PbS + 2O3 - PbSO4 + O2. При приливании к озону аммиака образуется белый дым нитрита аммония. Озон способен чернить серебро, переводя Ме в Ох. 2.Иногда молекула озона полностью вступает в реакцию: 3SO2 + O3 - 3SO3, Na2S + O3 - Na2SO3. 3.Со щелочами озон образует озониды, которые обычно окрашены в красный цвет: 4KOH + 4O3 - 4KO3 + O2 + 2H2O. 4.При озонировании непредельных углеводородов, образуюшиеся озониды разлагаясь под действием Н2О, образуют перекись водорода альдегид и кетон, зная их, можно легко идентифицировать и установить строение углеводорода. Получ озона. 1.Основным способом получения озона является пропускание тихого электрического разряда через кислород. Для получения более чистого озона смесь после этого рекомендуется охладить. 2.При медленном разложении фторида кислорода Н2О выделяется озон, кислород и фтороводород: 4OF2 + 4H2O - 2O3 + O2 + 8HF. Применение озона. Озон применяют для дезинфекции Н2О и в медицине, для отбеливания тканей и очистки некоторых соед, для идентификации соед. 11. Н2О, распр. в природе. Значение Н2О в биосфере. Н2О – одно из самых распр. соедин на Земле. Основа гидросферы. В морях и океанах Н2О»1,4×1018 т. В реках, озерах и водохранилищ сод-ся »2×1014т пресной воды. В виде ледников »2,4×106т. В атмосфере Земли » 1,3×10­­13т. Входит в сос-в литосферы в виде мин, горн. пород, присутств в почв. Обяз. компонент биосферы, входит в сос-в ВСЕх жив. организмов.
7. Получ кислорода. 1.Термическое разложение кислородосодержащих солей: 2KClO3 (150° C, MnO2) -2KCl + 3O2, KClO4 (500° C) - KCl + 2O2, 2KNO3 (t) - 2KNO2 + O2, 2KMnO4 (200° C) -MnO2 + K2MnO4 + O2, 4KMnO4 (2000° C) - 4MnO4 + 2K2O + 3O2. 2.Разложение Ох-в: 2Ag2O (t) - 4Ag + O2, 2H2O2 (MnO2 или hv) - 2H2O + O2, 2BaO2 (500° C) - 2BaO + O2(метод Брина), 2H2O (NaOH, электролиз) - 2H2+ O2. 3.Из сжиженного воздуха. 8. Как большинство других элементов, у атомов которых для достройки внешней оболочки из 8 электронов не хватает 1–2 электронов, кислород образует двухатомную молекулу. В этом процессе выделяется много энергии (~490 кДж/моль) и соответственно столько же энергии необходимо затратить для обратного процесса диссоциации молекулы на атомы. Прочность связи O–O настолько высока, что при 2300° С только 1% молекул кислорода диссоциирует на атомы. Электронная структура. В электронной структуре молекулы кислорода не реализуется, как можно было ожидать, распределение электронов октетом вокруг каждого атома, а имеются неспаренные электроны, и кислород проявляет свойства, типичные для такого строения (например, взаимодействует с магнитным полем, являясь парамагнетиком). 9. Газ О2 при н.у бесцветный, безвкусный и без запаха. Единственный из извест парамагнитных двухатомный газ. Длина хим связи 1,207 А0, Есв=497кДж/моль О-О. тпл=-219С, ткип=-193С. Жидкий О2 – голубая легковоспламен жидкость. Твердый О2 – светло-чиние кристаллы д=1,46г/см3. В соедх кислород проявляет СО –2, изредка +1 и +2.По хим активности кислород уступает только фтору. С большинство простых веществ он реагирует непосредственно, за исключением галогенов, благородных газов, платины и золота. Большинство простых и сложных веществ сгорают в кислороде ярким пламенем: 2Mg + O2 - MgO + Q + hv, 4P + 5O2 - 2P2O5 + hv, аммиак горит в кислороде зеленоватым пламенем: 4NH3 + 3O2 - 2N2 + 6H2O. При горении щелочных Ме образуются смеси Ох-в и перОх-в, при горении остальных Ме и неМе образуются Ох-ы, как правило, высших степеней окисления, при сгорании в недостатке кислорода – Ох-ы низших степеней окисления. Некоторые Меы, как то – хром, Al и другие образуют на поверхности пленку Оха, препятствующую дальнейшему окислению. 2.Под действием кислорода р-ры гидрОх-в некоторых переходных Ме переходят в нер-римые соед, выпадают в осадок: O2 + 4Fe(OH)2(суспензия) -4FeO(OH) + 2H2O, O2 + 4Cr(OH)2 + 2H2O - 4Cr(OH)3. Кислород ускоряет взаимодействие с Ме кислот: O2 + H2SO4 + Pb - PbSO4 + H2O2. Под действием кислорода р-ры некоторых веществ в кислотах и щелочах образуют комплексы: O2 + 4H2O + 2TiCl3 + 2HCl - H2O2 + 2H2[TiCl4(OH)2], O2 + 2Co(NO3)2 + 10(NH3ЧH2O) - [Co2(NH3)10(m -O22—)(NO3)4] + 10 H2O. 3.При пропускании через кислород электрических разрядов молекулярный кислород переходит в более активный атомарный: O2 - 2O. Атомарный кислород способен соединятся в аллотропную модификацию кислорода озон: 3O2 -2O3. 12. Строение Н2О и ее физ. св-ва. Н2О – равнобедр D, ÐНОН=104,50, lОН=0,957А0. О2 в молек. Н2О имеет сп3-гибрпидизацию. Хим. связи ОН образованы за счет перекрывания сп3-гибридных орбит О2 и с-орбиталей Н2. У атома О2 в молекуле Н2О имеются неподел е-пары, кот. могут быть исп д/образования дополнительных Н2 – и донорно-акцепторных связей. Именно это обст-во, а также большой дипольный момент приводит к сильн. взаимод молекул Н2О и полярными молекулами др. вещ-в. плотн=0,998г/см3. Физич св-ва Н2О аномальны, напр., плавление льда сопровождается уменьшением его V на 9%. 13. Н2 – связь в Н2О. В рез-те взаимод молекул Н2О между собой обр-ся ассоциаты. В парах часть молекул Н2О сущ-ют в виде димеров (Н2О)2. В конденсиров. фазах каждая молекула Н2О обр-ет 4 Н2 – связи. напр. к вершинам правильного тетраэдра. Длина Н2-связи Н×××О » 2,8А, ÐН×××О – Н -180. Н/О-Н×××О/Н\Н 14. Хим. св-ва Н2О. Н2Р – реакц. способн. соед, окисл. атомарным О2 и галогенами. Н2О+О-H2O2, H2O+F2-2HF+O, H2O+Г2-НГО+НГ, 2Н2О+2Br2-4HBr+O2. При пропускании паров Н2О ч/з расплавл уголь, она разлагается, образуя водяной газ. Н2О+С-СО+Н2. В присутс катлиз. Н2О реаг с СО, СН4 и др. углеводородами: СО+Н2О –Fe->CO2+H2, CH4+H2O-Ni, Co->CO+3H2O. Р при нагрев с Н2О образ. метафосфорную к-ту (НРО3). Н2О реаг. почти со всеми Ме при повыш т, с щеме и щеземе при комнатн, образуя Ох, Ме(ОН), к-ты. Взаимод Н2О с Ох приводит к кисл. или основнанием. Вода – олдин из наиб. важных и чаще др. исп. раств-лей. 15. Классификация природных Н2О и их водоподготовка. Жесткость Н2О. По велич. минерализации, содерж. раств-мых в Н2О мин. вещ-в (солей) природ. Н2О делится на: 1) ультрапресная (до 0,2 г/л); 2) пресная (0,2-0,5г/л); 3) слабоминерализированная (0,5-1г/л); 4) солоноватая (1-3 г/л); 5) с повыш. соленостью (10-35г/л); 6) переходая к рассолам (35-50г/л); 7) рассол (>50г/л). Осн. катионы Н2О: Са2+, Mg2+, Na+, K+×, Fe3+, анионы: Cl-, SO42-? HCO3-. Сос-в зависит от ГП водоема, вр. года и метеоусловий. Осн. операции водоподготовки (1 млн м3 /сутки): 1. Осветление – удаление из Н2О каллоидных частиц. 2. Обеззараживание – удаление болезнетворн. микробов и вирусов, осущ. хлорированием, озонированием или УФ облуч. Хлорир Н2О жидким или газообр Cl2. 3. Умягчение – уменьшение содержания ионов Ca2+, Mg2+, т.е. снижение ее жесткости.Общ жесткость – сумма концентраций ионов Са и Мг. Общ жестк = карбонатная (временная, удал. кипяч) и некарбонатной – пост. Врем. жесткость опред-ся наличием в воде гидрокарбонатов Са и Мг, кот при кипяч разлаг с выдел СО2. Са(НСО3)2-CaCO3+H2O+CO2, Mg(HCO3)2-Mg(OH)2+2CO2. Пост. жестк связана с присутст в Н2О сульфатов, хлоридов, силикатов и фосфатов Са и Мг. 4. Стабилизация – обработка Са (ОН)2 и Na2CO3 д/насыщ Н2О СаСО3. 5. Опреснение и обессоливание 6 Обескремнивание 7 дегозация.
16.Н2О2, его строение и получ. Кислотные, окислит. и восстановит. св-ва. Н2О2 – бесцветная сиропообразная жидкость плотн=1,45г/см3. Непрочное вещ-во, способн. разлагаться со взрывом на Н2О и О2, при этом выдел большое ко-во Q(197,5Дж). Н2О2 получ. в кач-ве промеж. продукта при горении Н2, но разлагается на Н2О И О2 из-за т. Получ. при действии атомарного Н2 на О2. В промышл. Н2О2получ. электрохимич методами (анодным окисл. раст-ров Н2SO4 с посл. гидролизом образ при этом пероксодвусерной к-ты Н2S2О8: 2H2SO4-H2S2O8+2H++2e-, H2S2H8+2H2O-2H2SO4+H2O2). В молек. Н2О2 атомы Н ковалентно связаны с атомами О, между кот. осущ. простая связь. Строение: Н-О-О-Н. Молекулы обладают большой полярностью. В Н2О раст-ре под влиян полярн молекул Н2О Н2О2 может обладать кислотными св-вами. Н2О2 – оч. слабая двухосновная к-та, в Н2О р-ре распад на ионы Н+ и НО2-. Диссоц по второй ступени практич не протекаеь. Она подавл присутсв Н2О, однако при связывании ионов Н+ (напр щелочью) диссоц. по 2-й ступени идет. Соли Н2О2 наз. перекисями, сост-ят из +зар ионов Ме и отр зар ионов О22-. Н2О2 обл св-вами как окисл. так и восстан, т.к. СО О2 в Н2О2 = -1. Все же Н2О2хар-ны окисл. св-ва. Н2О2 окисл вещ-ва с j0 < 1.776B, восстанавл с j0>0,682. Окислитель: KNO2+H2O2-KNO3+H2O. Восстан. Ag2O+H2O2-2Ag+H2O+O2. 17. Общ характеристика элементов VIIA гр таблицы М (ТМ). СО галогенов. Нахождение в природе. В переводе «рождающие соли». Фтор в соедх всегда имеет СО -1, остальные проявляют СО от -1 до +7. Почти все соедин Г соответствуют нечетным СО, что обусловлено возможностью последовательного возбуждения e в атомах элементов на d-подуровень, что приводит к увеличению числа е до 3, 5, 7.На внешнем электронном слое имеют 7 е (2s5p). В природе находятся исключительно в связанном сос-нии, - гл. обр. в виде Г-водородных кислот. F (6×10-2%) – плавиковый шпат (мин) CaF2, криолит Na3AlF6 и фторапатит Ca5F(PO4)3. Cl – поваренная соль (море, океан), карналлит KCl×MgCl2×6H2O, сильвин KCl. Br – в виде солей калия, натрия, магния. Бромды Ме содержаться в морской воде, в подземных рассолах, в Н2Ох озер. Иод – подземные буровые Н2О, водоросли, в виде солей калия – иодат KIO3, периодат KIO4. 18. Простые вещ-ва F2, Cl2, Br2, I2. Методы их получения и св-ва. F2: 1) F (с гр. «разрушающий»). Малые размеры и отсутствие д-подуровня придают эл-ту ряд отличит. св-в. Фтор – наиб электроотрицательный эл-т из всех. 2) Получают электролизом расплава KF×HF при 2500 и KF×2HF (1000) с медным или стальным катодом и угольным анодом в медн. или стальных электрлизерах. 3) Светло-желый газ с резким оч. неприятным запахом. Тпл=-2190С, Ткип=-1830С. Сильнейший окислитель, в его атм горят почти все вещ-ва. С пр. вещвами обр-ет фториды: S+3F2=SF6. При обычных усл не реагирует только с О, N, He, Ne, Ar. Из Ме наиб уст никель за счет пассивации. Реакции фтора с Н2-содержащими вещ-вами сопровожд. образ HF: 2Н2О+2F2=4HF+O2. С Н2 реагир со взрывом и в темноте. Cl-газ, Br-жидкость (единств из Нем), иод – твердое в-во. В виде прост вещ-в Г образ молекулы Э2, хорошо р-рим в орган раств-лях., р-рим в воде. Хар-ны св-ва окислителей, р-руют с Н2, образ галогеноводороды, явл. газами, хорошо раств в воде – сильные к-ты. Почти все способы получения Г сводятся к окисл их ионов, при помощи окислителей или под действием тока. Cl – электролиз водн рас-ров NaCl или К(катод)Сl(анод), в лаб – действ окисл на НСl. Br, I – окислением НВr и HI, в пром – из бромидов и иодидов, дейтв на р-ры Cl.
22. Соед ГВ с О2. Все соед ГВ с О2 неуст, не получ при непоср взаимод ГВ с О2, могут быть получ только косвенным путем, так как они все характер +знач станд энергии Гиббса. Наиб уст – соли кислородн кислот, наименее- Ох-ы и к-ты. OF2 (2NaOH+2F2-NaF+OF2+H2O) – сильнейший окислитель – светло-желтый газ, не раств в Н2О, не реаг с Н2О. Тпл=-2240, Ткип=-1450. Молекула ОF2 имеет угловое строение. Ох-ы Cl : 2HgO+Cl2- Cl+Hg-O-Hg-Cl+Cl2O; 2KClO3+C2H2O4+H2SO4- K2SO4+ 2CO2+ 2ClO2+ 2H2O; 2ClO2+2O3-Cl­2O6+2O2; 4HClO4+P4O10-2Cl2O7+4HPO3. 23. Кислородосорержацие к-ты Cl, Br, I. Сопоставление их кислотных и восстановит св-в. Ох-ы Г явл ангидридами соответст. кислород-содерж кисл: HClO(хлорноватистая) HBrO(бромноватистая) HIO (иодноватистая); соли: гипо Cl, Br, I иты.HClO2 – хлористая (…иты), HCl(Br, I)O3 – хлор (бром. иод) новатая (..аты). HCl(Br,I)O4 – хлор, бром, иодная (пер..аты). Кисл св-ва в ряду НГО, НГО2, НГО3, НГО4 усиливаются, окисл – ослабевают. 24. Кислородосодержащие к-ты хлора и их соли. HOCl – хлорноватистая, слабая к-та (гипохлориты), распадается даже в разб р-ре, сильный окисл – р-ры солей к-ты прим для беления. Наиб важные из солей: хлорная известь – белый порошок с резким запахом, сильный окислиткль (Саá
) (отбелив, дезинф): Cl2 + Ca (OH)2 - CaOCl2 + Н2О. Men+(ClO4)n перхлораты – один из наиб сильных безН2О окисл. НСlО3 – хлорноватая к-та (хлораты) – водн р-р с конц не выше 50%, сильная к-та и окислит. У хлоратов окисл св-ва выражены в р-ре слаюо, большинство хорошо раств в Н2О – ядовиты. КСlО3 – бертолетовая соль примен в артиллер деле для устр-ва запалов, так как с разл горюч в-вами взрывается при ударе. , в пиротехнике, спички. Хлорная к-та (перхлораты) HClO4 – бесцветн, дымящая на возд жидкость (получается действ конц H2SO4 на KClO4), безН2О – малоустойчива, взрывоопасная, ее Н2О р-ры устойчивы. Оксисл с-ва слабее, кисл сильнее – самая сильная из вскъ изв к-т. 25. Дифториды Ме. Почти все дифториды имеют структуру флюорита или рутила. Щеме, свинец, железо загор в АТС фтора, на нек ме(Cu, Ni) при низк Т ф не действ, но при нагрев р-рует со всеми. CaF2 – мин. плавиковый шпат. 26. Комлексные соед Г. Многие комплексные Г Ме гидролиз, это особ хар-но д/соедин с высшими СО Ме. Фсе комплексные фторо-кислоты –сильные. Известно немгного комплексов, в кот центром координации явл анион – это полигалогены, содерж анионы [I×xI2]- (xÎ1;40) или [Br×xBr2]- (xÎ1;2)
19. Взаимодействие Г с Н2О и щелочами. 1)При взаим с Н2О Cl образуются HCl и НОСl – хлорноватиствая к-та.2) Фтор: При пропускании фтора через охлажд 2% рас-р NaOH образуется OF2: 2F2+2NaOH=2NaF+H2O+OF2. В горячей концентрированной щелочи реак с фтором протекает так: 2F2(г)+4ОН-(водн)=4F-(водн)+О22О. Фтор реагирует с холодной Н2О, образуя фтороводород и кислород: 2F2+2H2O=4HF+O2. 4) Бром и иод диспропорционируют в воде аналогичным Cl образом, но степень диспропорционирования в воде уменьшается от хлора к иоду. Хлор, бром и иод диспропорционируют также в щелочах. Например, в холодной разбавленной щелочи бром диспропорционирует на бромид-ионы и гипобромит-ионы (бромат (I)-ионы): Br2+2OH-Br-+BrO-+H2O При взаимодействии брома с горячими концентрированными щелочами диспропор­ционирование протекает дальше: 3BrO-(водн. гипобромат-ион)-2Br -(водн. бромат-ион)+ BrO3- (водн. бромат (5)ион) Иодат (I), или гипоиодит-ион, неустойчив даже в холодных разбавленных щелочах. Он самопроизвольно диспропорционирует с образованием иодид-иона и иодат(V)-иона. Реак фтора со щелочами, как и его реак с Н2О, не похожа на аналогичные реакции других галогенов. 20. Н2 соед Г и их восстан св-ва. Хи связь в молек ГВ – полярная ковалентная: общ. е пара смещена к атому Г. Прочность связи падает в ряду НF – HCl – HBr – HI, падает и устойч. к t. ГВ – бесцветные газы с резким запахом, хорошо раств. в воде, раст-ние сопр диссоц по кисл типу; в возд. конц. р-ры ГВ дымят вследствие выделения ГВ. Отриц ионы ГВ, за искл фторид –иона, облаз восстан св-вами, возраст в ряду Cl-, Br-, I-. При дейчствии ГВ на Ме, Ме могут окисл лишь ионами Н+, поэтому ГВ могет реаг в раст-ре только с Ме, стоящими до Н. HCl – бесцветная жидк с резким запахом получается р-рением в воде НСl. HBr, HI похожи по св-вам на HCl, но отл более выраж восстан св-вами. Молек О2 уже при tкомн окисляет HI. HBr взаим с О2 медленне, HCl не взаимод вообще. Восстан св-ва HBr, HI появл при взаим с H2SO4: 2HBr+H2SO4- Br2+SO2^+2H2O; 6Hi+H2SO4-3I2+S+4H2O или 8Hi+H2SO4- 4HI2+H2S+4H2O. Обычно ГВ получ действием Н2О на соедин Br и I с P – PBr3, PI3. Водн рас-р HF – плавиковая к-та – к-та средн силы. При нейтр плавик к-ты КОН образ дифторид калия: 2HF+KOH-KHF2+H2O+KF×HF. Cоли плавик к-ты обычн плохо раств в воде. 21. Водородная связь в молекуле HF. Структура HF в газовой, жтдкой и твердой фазах.В жидк и газзобр сос-нии ассоциирован за счет парных Н2-связей HF×××HF. В газовой фазе при t=tкип (19,5) ассоциаты HF содержат и солекулы HF4. В кристалл сос-нии HF имеет цепееобр полимерн структуру (/Н×××F&bsol;H×××F/H×××F&bsol;)n 27. Сероводород, получ, строение и свойства. Сульфиды, методы их получения и св-ва. Р-римость и гидролиз сульфидов. H2S – халькогенводород – ядовитый газ с оч. неприятным запахом тухлых яиц. Получают в аппаратах Кита: FeS+HCl-FeCl2+H2S^. Tкип= - 60,3, Тпл= - 85,6. На воздухе H2S горит голубоватым пламенем: 2H2S+3О2 - 2Н2О+2SO2. H2S легко воспламеним. H2S (к-та) сильнейший восстановитель. Встречается в природе в вулканич. газах и в Н2Ох мин ист. Средние соли H2S к-ты (водн. р-р H2S-слабая) – сульфиды, большинство нераств в воде, некоторые нераств в воде, р-римы в к-тах. Сульфиды можно получить непосредственным соед S с Ме: Fe+S-FeS+100.4кДж, действуя H2S на р-р. в Н2О соли соотв Ме: СuSO4+H2S-CuS+H2SO4. Сульфиды, р-рим в Н2О немогут быть получены из солей соотв Ме. При взаимодействии S с сульфидами Ме образ полисульфиды: Na2S+S-Na2Sn(nÎ2-8). Сульфиды подвергаются гидролизу: Na2S+H2OÛNaHS+NaOH (S2-+H2OÛHS-+OH). Различия в раств сульфидов исп в аналит. химии для посл осажд Ме из р-ров. 28. Полусульфиды. Селениды и теллуриды. Селениды и теллуриды – соли селено- и теллурводорода – сходны с сульфидами в отнош раств в Н2О и к-тах.- ядовитые соед. Большинство из них в Н2О нераств, р-римы соли щелочн Me, Ва и аммония. 29. Применение S, Se, Te и их соед. S исп. для производства H2SO4, спичек, пластмасс, удобрений, взрывчатки, ядохимикатов и т.д. в проц. получ резины, в орг синтезе. Se, селениды и теллуриды – полупроводники, исп. для производства выпрямителей и фотоэлементов. Sе к стеклу=красный цвет. H2SO4 – прозв фосфорных удобр, д/чистки нефтепродуктов, в орг. синтезе, в гидроМеургии и т.д. Р-ры гидросульфидов – Ca(HSO3)2, NaHSO3, HN4HSO3 – целлюлозо-бум. промышл. Na2SO4- пр-во стекла. 30. Взаимодействие H2SO4 c Me. H2SO4конц – окислитель, окисл. Ме, стоящие в ряду напр до Ag включ. Продукты ее восстан. могут быть различны в зависим от активности Меа, конц к-ты, температуры. При взаимод с малоакт Ме H2SO4 воостан до SO2: Сг+2 H2SO4- CuSO4+SO2+2H2O. При взаимод с более активн Ме продуктами восстановл могут SO2, S, H2S. Разб. H2SO4 окисл своим ионом H2, поэтому она взаимод только с теми Ме, кот стоят в ряду напряж до Н2. Свинец не раств в разбавл к-те, так как PbSO4 нераств.
31. S, Se, Te. Общ хар-ка, нахожд. в природе, получ и св-ва. Аллотропия S, Se, Te. S – 0,05% земн кор, в воле морей, океанов (0,04%), в самородном виде, в мин: пирит (Fe2S), Sb2S(антимонит), PbS (гаринит), HgS (киноварь), BaSO4 (барит), CaSO4×2H2O (гипс), белки, витамины. Se-лунный камень – в земн. коре 1,4×10-5%, изв более 50 мин: берцилианит:Cu2Se, самородн. Се, Te – 1×10-6­, 100мин: самородн, гессит Ag2Te, AuAgTe4 – сильвинит; ВСЕ - тверд вещ-ва. Se получают из отходов, образ при произв H2SO4, при электролитическом рафинировании меди и пр. S получают из самородной, плавлением и дальн очисткой, а также из газов, обр при коксировании и газификации угля. Хим св-ва: S, Se, Te опред строением их внешнего валентн Е уровня. За счет несп е np-подуровня и наличия вакант д-орбит, на кот могут перех е с- и п-подуровней СО этих эл-тов от -2 до +6. В ряду S, Se, Te окисл способн эл-тов ослабевает, восстан – увеличив. S, Se, Te могут быть как окисл так и восстан: Zn+S-ZnS, S+O2 - SO2, участвовать в реакц диспропорционир: S+NaOH-Na2S+Na2SO3+H2O. C H2 S, Se, Te образ ХГ-Н2: Н2S, H2Se, H2Te. Аллотропия: 1) S сущ. в неск модификациях, изучены- ромбическая, моноклинная и пласическая. При об усл устойчива ромбическая модифик a-сера, при t>95.4 – моноклинная b-сера, медл переход в a форму при комн. Т. Молекулы a и b модифик состоят из 8 атомов: S8 .Пары S при Ткип сос-ят из семси 59%-S8, 34% - S6, 4% - S4 3% S2. При быстром охлажд расплавл серы, образ пластическая сера, переход в a-серу при Ткомн. Пурпурная сера – при кристаллиз паров серы на поверхн охлажд жидким азотом. 2)Se известен в уст серой модификации Тпл=215, Тк=685, плотн=4,8г/см3 и менее уст красной и черной, отлич от др. различным строен кристаллов. В парах Se ведет себя аналог S 3) Te встреч в двух модифик – аморфный темно-коричнев и серебристо-белый. Пары сост из солек Те2. 32. ДиОх-ы S, Se, Te. Получ и св-ва. ДиОх-ы S, Se, Te получаются при нагрвании с O2, являются ангидридами соотв к-т. При обычн условиях диОх-ы Se, Te – твердые вещ-ва, проявляют преимущ окисл св-ва, легко восстан до свободных Se и Те. Действие сильных окислителей на диОх-ы Se, Te могут быть переведены в селеновую и теллурвую к-ты. SO2 получают из смеси оставш после обжига колчедана, сжиганием серы, из отходящих газов заводов цветной Меургии, из топочных газов, из гипса. SO2 образ при прокаливании на возд сулифидов Ме. SO2 - бецветный газ с резким запахом горящей серы. Хорошо рпстворим в воде, с образ Н SO4. 33.Соли кислородосодержащих кислот S. Сульфиты, Сульфаты. Сульфиты – средние соли H2SO3 - восстан-ли. Сульфиты наиб активн Ме при прокаливании разлагаются с образ сульфидов и сульфатов. Сульфиты К и Na примен для отбеливания некторых матер, в текстильной пром при краш тканей, в фотографии. Сульфаты – средние соли H2SO4 – большинство довольно хорошо р-римы в воде. К практически нераств относ (см табл раств). BaSO4 нераств не только в Н2О, но и в кисл. разб, поэтому обр белого осадка в к-тах служит указанием на ионы SO42-. Na2SO4 – глаубевая соль, примен при изгот стекла. K2SO4-бесцветн крист, хорошо раств в Н2О. Сульфат Магния содерж в морской воде, Кальция в виде гипса. Купоросы – сульфаьы меди, железа, цинка и нек др Ме, содерж кристалл Н2О 35. Водородные соед азота. Аммиак, гидроксиламин, гидразин. Азотоводородные к-ты. Строение, св-ва, получ. 1) Аммиак – NH3 – бесцветный газ с резким запахом. Молекула NH3 имеет форму правил. тригональн пирам, с атомом N в сос-нии сп3-гибридизации. Ткип=-35,35, Тпл = -77,7. NH3 прекрастно р-рим в Н­2О, образовывая гидрОх аммония – слабое основание: NH3 + Н2О-NH4OH -NH+4+OH-. Жидк NH3 – прекр раствиритель, раств многие Ме. Рас-ры Ме в NH3 имеют Ме-ую проводимость и явл сильнейш восстан. NH3 - весьма реакционное соедиение, д/кот. хар-ны реакции просоедин. 2) Гидроксиламин NH2OH – бесцветные кристалла (тпл=33)
, способен к р-циям присоед с образ связей донорно-акцепнорному способу. Хорошо раств в Н2О, с к-тами дает соли. Проявляет как окислит, так и восстан. в-ва. 3) Гидразин N2H4 – бесцветная жидк, ткип=113,5, получ при действии гипохлорита Na NaClO на конц раст-р аммиака.
. Способность к реакц. присоед, хорошо раств в Н2О, при взаимод с к-тами образ ряд солей, бладает основными с-вами. N2H4 – хороший восстановит, составная часть топлива ракетных двигателей. Он и его пары ядовиты. 4) Азитоводородная к-та H­N3 может быть получен действием HNO2 на водн рар-р гидразина, бесцветная жидк (ткип=36) с резким запахом. Слабая к-та, диссоциирцет на ионы Н+ и N3-. Анион азидоводорода:
, взрывчатое вещ-во. 36. Ох-ы азота. Их получ, св-ва, строение. 1) Ох азота (I) N2O (полуокись азота, веселящий газ) имеет слабый приятный запах и сладковатый вкус – средство д/наркоза. Молекула линейна: N-=N+=O, получают разложением NH4NO при 250С: NH4NO- N2O+H2O. N2O проявляет сильные окисл св-ва. С Н2, NH3, CO, органич вещ-вами образ. взрывоопасн. смеси. 2) NO (монОх азота). N=O, при обычн усл быстро окисл до NO2. NО почти нераств в Н2О – несолеобраз Ох. Взаимод с Г с образ нитрозилгалогенов: 2 NО+Сl2-2NOCl. С H2SO4 в присутствии воздуха образует нитрозил серную к-ту (NO)HSO4. Получ. каталит окисл NH3 как побочн прод в пр-ве азотной к-ты. В атмосф NO образ при грозов разрядах. 3) N2O3 (диОхтриазот) сущ-ет при t<-101C, при более высоких t разлагается: N2O3 - NO+NO2. Образуется при пропускании электрич искры ч/з жидкий воздух. 4) NO2 – диОх азота. . При обычных t сущ-ет в равновесии с тетраОхом диазотом N2O4: 2NO2 - N2O4, При t>140С равновесие полн смещается влево. Твердое вещ-во – чистый димер. NO2 взаимод с Н2О и щелочами. NO2 и N2O4 – сильн окисл. Получ в лаб разложением безН2О (PbNO3)2 -(t) PbO2+2NO2. 5) N2O5 при комн т самопроиз разл на NO2 и О2. Раств-ся в Н2О, образуя азотную кислоту. В лаборатории получают взаим NHO3 c P2O5. Все Ох-ы азота физиологич аналогм, кроме N2O, сильно ядовиты. 37. Азотистая к-та, ее строение и св-ва. Нитриты и их св-ва.HNO2 получают действием неорган кис-т на нитриты Ме: 2NaNO2+H2SO4 -Na2SO4+2HNO2. HNO2 – одноосн. к-та среднй силы, при взаимод с основ образует соли – нитриты. Проявляет окислит-восстан двойств (2HNO2+2KI+H2SO4-2NO+I2+K2SO4+2H2O; 5HNO2+2KMNO4+3H2SO4-5HNO3+ 2KMNSO4+K2SO4+3H2O), известна только в сильно разб р-рах. Нитриты – кристаллы, хорош раств в Н2О (за искл серебра).
34.Кислородосодержащие к-ты серы. H2SO3, H2SO4, дисерная, тиосерная, пероксодисерная к-та. Строение и св-ва. 1) Н2SO3 – очень непрочное соед, изветна только в Н2О р-рах. Р-р Н2SO3 поглощает кислород из воздуха окискляется до серной. Н2SO3 - хороший восстановитель, при взаимодействии с сильными восстан. может играть роль окисл. 2)H2SO4
- строение. H2SO4 образ при взаимод SO3 c H2O. Безводная H2SO4 - бесцветная маслянист жидк, тпл=10,3С. При раств H2SO4 в Н2О образ гидраты, выдел большое кол. теплоты. Обладает способностью поглозать воду, H2SO4конц – сильный окислитеь. H2SO4конц – окислитель, окисл. Ме, стоящие в ряду напр до Ag включ. Продукты ее восстан. могут быть различны в зависим от активности Меа, конц к-ты, температуры. При взаимод с малоакт Ме H2SO4 воостан до SO2: Сг+2 H2SO4- CuSO4+SO2+2H2O. При взаимод с более активн Ме продуктами восстановл могут SO2, S, H2S. Разб. H2SO4 окисл своим ионом H2, поэтому она взаимод только с теми Ме, кот стоят в ряду напряж до Н2. Свинец не раств в разбавл к-те, так как PbSO4 нераств. 3)Олеум –– р-р SO3 в H2SO4, широко примен в пром д/ очистки нефтепродуктов, произв красителей, взрывчат вещ-в. В олеуме часть молекул SO3 соедин с H2SO4, при этом образуется двусерная (пиросерная к-та): H2S2H7. При охложд олеума двусерная к-та выдел в виде бесцв кристаллов, соли двусрной к-ты – дисульфаты или пиросульфаты. 4) Тиосерная к-та H2S2O3. Получается, если прокипятить Na2SO3 c cерой и, отфильтр изб S оставить охлажд, получатся соли тиосерной к-ты.
. H2S2O3 неустойчива, распад при ткомн, устойчивы ее соли – тиосульфаты. 5) Пероксолвусерная к-та получается при соединении попарно ионов HSO4-, получившихся при электролизе 50% р-ра H2SO4 на аноде. H2S2O8:
. Обладает сильными оксилительными св-вами.
38. Сравнение строения и св-в галогенидов азота, фосфора, мышьяка, сурьмы и высмута. Гидролиз галогенидов. Известны бинарные галогениды МХ3 и МХ5. . Все тригалогениды быстро гидролизуются и довольно летучи; газообразн молекулы имеют пирамидальную решетку. Большинство тригалогенидов обр. молекулярные решетки, но AsI3, SbI3 и BiI3 кристаллиз в слоистых решетках, не содерж отд. молекул. BiF3 обр-ют ионную решетку. Все трихлориды и трифториды, иск Р, присоед доп ионы галогена, образ галогенистые комплексные анионы. PF3 – бесцветный газ, способен образ комплексы с переходными Ме. PCl3 - летучая низкокипящ жидкость, гидролиз с образ фосфористой к-ты. Тригалогениды As, Sb Bi подобны произв Р как по физ так и по хим св-вам. Проявляют заметную электропроводн. Известны 7 бинарных пентагалогенидоы: 4 фториды, ЗCl5, PBr5, SbCl5/ Способность этих соедин диссоциировать в газовой фазе на тригалогениды и галогены различны. 39. Применение N2 и его соед. Азотные удобр. Основная обл. примения N2 – синтез аммиака, кот. исп в пр-ве HNO3, мочевины, NH­4NO3, в чистом виде как удобрение и т.ж. Свободный азот прим. как защитную атмосф в хим. и Ме процессах. Жидкий азот – самый дешевый хладогент. Осн обл прим азотистой к-ты – орг. синтез и пр-во мин. удобрений, взрывчатых вещ-в. Особая область – азотные удобрения. 40. Фосфор. Общ хар-ка, нахожд. в природе. Аллотропия Р: красный, белый, черный Р, их св-ва и получ. Содерж Р в земн коре 9,3×10-2%. Осн мин: фосфорит Са3(РО4)2 и апатит 3Са3(РО4)2×СаХ2, где Х=F, Cl, OH. Р-биогенный эл-т. В орг ч-ка 1%по массе. Р образ 11 аллотр. форм. 1) Белый Р Тпл=44, Ткип=257. Белые крист со своеобр запахом, очень мягкие – мягче воска. В парах сос-ит в осн из молекул Р4, ядовит, огнеопасен, светится в темноте. самовоспламен при t>40С. 2) красный Р (чаще всего исп. в лаб) – темно-красное мелко-крист вещ-во, нелетуч и неядовит. При нагревании красн Р до 425С испаряется, при охлажд паров образ белый Р. Очень медленно окисл на воздухе, не светится в темноте. 4) Черный Р – наибол. устойчив, образуется из белого при повыш давл более 1,2 ГПа и t>200. Имеет кристаллич структуру, аналогичн стр-ре графита и по св-вам схож с ними.
41. Общ хар-ка мышьяка, сурьмы и висмута, нахожд. в природе. 1) As встречается в природе > частью в соединен. с Ме и S и лишь изредка в св. сос-нии. Сод в земн коре 0,0005% масс. Получ из мышьяковистого колчедана FeAsS. а) серый As – серо-стальная хрупакая кристалл. масса с Ме блеском на свежем изломе. d=5,72г/см3. При нагревании под норм давлен сублиминируется. Обладает Ме электропроводн. Свободный As и его соедин – сильные яды. 2) Sb в природе встреч в соедин с S – сурьмяный блеск, антимонит Sb2S3. Содерж в земн коре 0,00005% масс. При прокаливании на воздухе сурьмяного блеска, он превр-ся в Sb2O3, из кот Sb получ. путем восстан углем. Sb – серебристо-белые кристаллы, обл Ме блеском, отличается хрупкостью, хуже проводит тепло и ток, чем Ме. 3) Bi хар-ся преобл Ме св-в, может рассматр как Ме. В земн коре 0,00002%. Встречается как в своб сос-нии, так и в виде висметного блеска Bi2S3 и висмутовой охры Bi2O3. Блест розовато-белый хрупкий Ме 42. ТриОх серы. Получ, строение, св-ва. SO3 образуется при каталит окислении SO2 O2 воздуха при т=450. В газовой фазе SO3 – плоский тр-к, в жидк и тверд – цикл полимер или полимерн цепи. SO3 бесцветная легкоподвижная жидкость, tкип=44,7Сю тпл=16,8. 43. Азотная к-та. Строение и св-ва. Взаимод Ме с HNO3. Нитраты. Чистая азотная к-та HNO3—бесцвет­ная жидкость плотностью 1,51 г/см3 при - 42 °С застывающая в прозрачную кристаллич массу. На воздухе она, «дымит», так как пары ее обра­зуют с 'влагой воздуха мелкие капельки тумана. Азотная к-та не отличается прочностью, Уже под влиянием света она постепенно разлагается:4 HNO3- 4NO2+O2+2H2O Чем выше температура и чем концентрированнее к-та, тем быстрее идет разложение. Выделяющийся диОх азота р-ряется в кислоте и придает ей бурую окраску. Азотная к-та принадлежит к числу наиб сильных кис­лот; в разбавленных р-рах она полностью распадается на ионы Н+ и- NO-z3. Азотная к-та действует почти на все Меы (за исключением золота, платины, тантала, родия, иридия), превращая их в нитраты, а некоторые Меы—в Ох-ы. Чем выше концентрации HNO3-, тем менее глубоко она восстанавливается. При реакх с конц к-ой чаще всего выдел NO2 . При взаимодействии разбавленной азотной к-ты с малоактивными Ме, например, с медью, выделяется NO. В случае более активных Ме — железа, цинка, — образуется NO2 . Сильно разбавленная азотная к-та взаимодействует с активными Ме—--цинком, магнием, Al—с образованием иона аммония, даю­щего с кислотой нитрат аммония. Обычно одновременно образуют­ся несколько продуктов. Для иллюстрации приведем схемы реакций окисления нек Ме азотной кислотой; Cu+HNO3конц- Cu(NO3)2+NO2 +H2O, Cu+HNO3разб-Cu(NO3)2+NO+H2O. Zn+HNO3оч. разб-Zn(NO3)2+NH4NO36H2O При действии азотной к-ты на Меы водород, как пра­вило, не выделяется. Соли азотной к-ты называются нитратами. Все они хо­рошо р-ряются в воде, а при нагревании разлагаются с выде­лением кислорода. При этом нитраты наиб активных Ме переходят в нитриты: 2KNO3-2KNO2+O2 Нитраты большинства остальных Ме при нагревании распадаются на Ох Меа, кислород и диОх азота. Наконец, нитраты наименее активных Ме (например, се­ребра, золота) разлагаются при нагревании до свободного Меа: 2AgNO3-2Ag+2NO2+O2 Легко отщепляя кислород, нитраты при высокой температуре являются энергичными окислителями. Их водные р-ры, напро­тив, почти не проявляют окислительных свойств. Наиб важное значение имеют нитраты натрия, калия, ам­мония и кальция, которые на практике называются селитрами. 44. Водородные соед фосфора. Фосфин, дифосфин, твердые гидриды фосфора. Фосфин РН3 представляет собой бесцветный сильнотоксичный газ с запахом гнилой рыбы. Молекулу фосфина можно рассматривать как молекулу аммиака. Однако угол между связями Н-Р-Н значительно меньше, чем у аммиака. Это означает уменьшение доли участия s-облаков в образовании гибридных связей в случае фосфина. Связи фосфора с водородом менее прочны, чем связи азота с водородом. Донорные свойства у фосфина выражены слабее, чем у аммиака. Малая полярность молекулы фосфина, и слабая активность акцептировать протон приводят к отсутствию водородных связей не только в жидком и твердом состояниях, но и с молекулами Н2О в р-рах, а также к малой стойкости иона фосфония РН4+. Самая устойчивая в твердом состоянии соль фосфония - это его иодид РН4I. Н2О и особенно щелочными р-рами соли фосфония энергично разлагаются: РН4I + КОН = РН3 + КI + Н2О Фосфин и соли фосфония являются сильными восстановителями. На воздухе фосфин сгорает до фосфорной к-ты: РН3 + 2О2 = Н3РО4 При разложении фосфидов активных Ме к-тами одновременно с фосфином образуется в кач примеси дифосфин Р2Н4. Дифосфин - бесцветная летучая жидкость, по структуре молекул аналогична гидразину, но фосфин не проявляет основных свойств. На воздухе самовоспламеняется, при хранении на свету и при нагревании разлагается. В продуктах его распада присутствуют фосфор, фосфин и аморфное вещество желтого цвета. Этот продукт получил название твердого фосфористого водорода, и ему приписывается формула Р12Н6. 45. К-ты мышьяка и сурьмы, их получения и св-ва. 1) Ортомышьяковистая к-та (мышьяковистая к-та) H3AsO3. H3AsO3 - H2O+HAsO2 – равновесие смещено вправо, т.е. преобладает метамышьяковистая к-та HAsO2. При действии на As2O3 щелочей получ. соли мышьяковистой к-ты – арсениты. Соед As(III) проявл. восстановит. св-ва. 2) Мышьяковая к-та. H3AsO4 – твердое вещ-во, хорошо р-р в Н2О. По силе практич равна Н3РО4. Соли – арсениты похожи на соответств. фосфаты. Известны мета- и двумышьяковистая к-ты. При прокаливании мышьяковой к-ты получается Ох As (IV), или мышьяковый ангидрид. As2O5 в виде белой стеклообр массы. К-тые св-ва H3AsO4>H3AsO3. Образует средний – арсенаты и кислые соли. 3) Sb2O3 раств-ся в щелочах с образ солей сурьмянистой H3SbO3или метасурьмянистой HSbO2 к-ты: Sb2O3+2NaOH- 2NaSbO2+H2O. Cурьмянистая к-та или Sb(OH)3получ в виде белого осадка при действии щелочей на соли Sb (III): SbCl3+3NaOH-Sb(OH)3+3NaCl. Осадок легко р-рим как в изб щелочи, таки в к-тах. 46. Общ хар-ка элементов Va группы. СО и типы соедин. N, P, As, Sb, Bi эти эл-ты имеют 5е в наружном слое атомов, хар-ся как неМеы, но способность к присоед. выражена слабее, чем у соотв эл-тов 6 и 7 гр. Высша +СО э-тов = +5, - = -3.Связь эл-тов с Н2 менее полярна, чем у эл-тов 6 и 7гр, вследствии относит < электроотр. Поэтому Н2 – соед этих эл-тов не отщепляют в водн р-ре ионы водорода и не облад кислыми св-вами.
47. Галогениды Р. Получ, строение, св-ва. С галогенами фосфор образует три- и пентагалогениды. Эти производные фосфора известны для всех аналогов, но практически важны соед хлора. РГ3 и РГ5 токсичны, получают непосредственно из простых веществ. РГ3 - устойчивые экзотермические соед; РF3 - бесцветный газ, РСl3 и РВr3 - бесцветные жидкости, а РI3 - красные кристаллы. В твердом состоянии все тригалогениды образуют кристаллы с молекулярной структурой. РГ3 и РГ5 являются кислотообразующими соедми: РI3 + 3Н2О = 3НI + Н3РО3 48. N - газ без цвета и запаха. Точка кипения жидкого Nа -195,8 град. С, точка плавления твердого Nа -210,5 град. С. Твердый N получается в виде порошка и в виде льда. N плохо р-рим в H2O и органических р-рителях. Среди всех элементов, образующих земной шар, один N (если не считать инертных газов) как бы избегает образовывать химические соед и входит в состав земного шара преимущественно в свободном виде. А так как N в свободном состоянии - газ, основная его масса сосредоточена в газовой оболочке той сложной хим системы, которую представляет собой земной шар, - в его атмосфере. Содержание Nа в земной коре в виде 0,01 %. Атм более чем на 75 массовых долей, % состоит из газообразного Nа, что равно ~4*1015 т. Связанный N образует минералы в форме нитратов: чилийская NaNO3, индийская KNO3 и норвежская Ca(NO3)2 селитры. N в форме сложных органических производных входит в состав белков, в связанном виде содержится в нефти (до 1,5 массовой доли, %), каменных углях (до 2,5 массовой доли, %). Молекула N2 является самой устойчивой формой его существования, чем обусловлена так называемая проблема связанного Nа. Потребление связанного Nа растениями и животными приводит к обеднению окружающей среды соедми Nа. . В лаб/ N легко может быть получен при нагре конц нитрита аммония: NH4NO2 ® N2 + 2H2O. Технический способ получения Nа основан на разделе предварительно сжиженного воздуха, кот затем подвергается разгонке.
Основная часть добываемого свободного Nа испол д/ пром про-ва аммиака, который затем в значительных количествах перерабатывается на Nную кислоту, удобрения, взрывчатые вещества и т. д. Помимо прямого синтеза аммиака из элементов, промышленное значение для связывания Nа воздуха имеет разработанный в 1905 цианамидный метод, осн на том, что при 10000С карбид кальция (получаемый накаливанием смеси известии угля в электрической печи) реаг со сво-ым Nом: CaC2 + N2 ® CaCN2 + C. Обра цианамид кальция при действии перегретого водяного пара разлагается с выделением аммиака: CaCN2 + 3H2O ® CaCO3 + 2NH3.
49. Ох-ы фосфора (III, V). Фосфорные к-ты. Строение, св-ва, получ. Химический Ох фосфора (+3) имеет кислотную природу: Р2О3 + 3Н2О = 2Н3РО3 Фосфористая к-та - бесцветные легкоплавкие хорошо р-римые в воде кристаллы. По химическому строению она представляет собой искаженный тетраэдр, в центре которого находится атом фосфора с sр3 - гибридными орбиталями, а вершины заняты двумя гидроксогруппами и атомами водорода и кислорода. Атом водорода, непосредственно соединенный с фосфором, не способен к замещению, а потому фосфористая к-та максимум двухосновна и нередко ее изображают формулой Н2[НРО3]. Фосфористая к-та - к-та средней силы. Соли ее - фосфиты получают взаимодействием Р2О3 со щелочами: Р2О3 + 4NаОН = 2Nа2НРО3 + Н2О Фосфиты щелочных Ме и кальция легко р-римы в воде. При нагревании фосфористая к-та диспропорционирует: 4Н3РО3 = РН3 + 3Н3РО4 Фосфористая к-та окисляется многими окислителями, в том числе галогенами, например: Н3РО3 + Сl2 + Н2О = Н3РО4 + 2НСl Получают обычно фосфористую кислоту гидролизом тригалогенидов фосфора: РГ3 + 3Н2О = Н3РО3 + 3НГ При нагревании однозамещенных фосфитов получаются соли пирофосфористой (дифосфористой) к-ты - пирофосфиты: 2NаН2РО3 = Nа2Н2Р2О5 + Н2О Пирофосфиты при кипячении с Н2О гидролизуются: Nа2Н2Р2О5 + 3Н2О = 2NаОН + 2Н3РО3 Сама пирофосфористая к-та Н4Р2О5 (пентаоксодифосфорная), как и фосфористая, только двухосновна и сравнительно малоустойчива. Известна еще одна к-та фосфора (+3) - плохо изученная полимерная метафосфористая к-та (НРО2)n. Наиб характерен для фосфора Ох Р2О5 - пентаОх дифосфора. Это белое твердое вещество, которое легко может быть получено и в стеклообразном состоянии. В парообразном состоянии молекулы Оха фосфора (+5) имеют состав Р4О10. Твердый Р2О5 имеет несколько модификаций. Одна из форм Оха фосфора (+5) имеет молекулярную структуру с молекулами Р4О10 в узлах решетки. По внешнему виду эта модификация напоминает лед. Она обладает небольшой плотностью, легко переходит в пар, хорошо р-ряется в воде и реакционноспособна. Р2О5 - сильнейший дегидратирующий реагент. По интенсивности осушающего действия он намного превосходит такие поглотители влаги, как СаСl2, NаОН, Н24 и др. При гидратации Р2О5 сначала образуется метафосфорная к-та: Р2О5 + Н2О = 2НРО3 дальнейшая гидратация которой последовательно приводит к пирофосфорной и ортофосфорной кислоте: 2НРО3 + Н2О = Н4Р2О7 и Н4Р2О7 + Н2О = 2Н3РО4 Ортофосфорная к-та - одно из наиб важных производных фосфора (+5). Это бесцветные, легкоплавкие, расплывающиеся на воздухе кристаллы, смешивающиеся с Н2О в любых соотношениях. В твердой кислоте и концентрированных р-рах действуют межмолекулярные водородные связи. Поэтому крепкие р-ры Н3РО4 отличаются высокой вязкостью. В водной среде ортофосфорная к-та - к-та средней силы. В водном р-ре ортофосфаты - соли фосфорной к-ты - подвергаются гидролизу, причем рН среды при переходе от средней соли к кислой закономерно снижается. Nа3РО4 + Н2О = NаОН + Nа2НРО4 , рН = 12,1 Nа2НРО4 + Н2О = NаОН + NаН2РО4 , рН = 8,9 51. Угольная к-та и её соли. Строение. Св-ва, получ. Н2СО3 может сущ-ть только в Н2О-ном р-ре. При нагрев р-ра СО2 улетуч, в конце конов остается Н2О. Н2СО3 слабая, в раст-ре диссоу на Н+ м НСО3- ­­ и мало на СО32-. Получают р-рением СО2 в Н2О. Средние соли – карбонаты кислые – гидрокарбонаты. Соли могут быть получ действ СО2 на щелочи, или путем обменных р-ций между р-р. солями Н2СО3 и солями др. к-т. Со слабыми осн-ями Н2СО3 дает осн соли, напр (СuОН)2СО3 – малахит. При действ. к-т все карбонаты разлаг-ся, с выде СО2. При нагрев все карбонаты, кроме солей ЩеМе, разлагаются с выделен СО2. Гидрокоарбонаты ЩеМе при нагрев перход в карбонат. Большинство гадрокарбонатов, а также карбонаты К, Rb, Ca, Na, р-рим в Н2О. Остальные в оде нер-р. Из солей Н2СО3 самая распр – известнят СаСО3. Na2CO3 – cода, К2СО3 – поташ – для получ мыла, тугоплавкого стела, в фотографии, СО(NН2)2 – карбамид (мочевина)-белые крист хорошо раств в воде, - удобрение и добавка к корму жвачных животных. 52. SI ДИОХ (кремнезем), SiO2, кристаллы – наиб стойяк соедин Si. Глав. обр в прир. наход в виде мин – кварца. Прозрачн, бесцв крист. кварца – горн хрусталь. Кремень – одна из разновидн кварца. Агат и яшма – мелкокристал разновидн кварца. Аморфный SiO2 получ, если охладить расплавл кристалл SiO2. Кисл-ты, за искл плдавиковой (р-р H2F в Н2О), не действ на SiO2. SiO2 применяет в строит, производстве стекла, керамики, цемента, абразивов, в звукозаписи и звуковоспроизведении. Кварцевое стекло (КС) можно подверг действ более вечок темпер, чем обычн, оно пропускает УФ лучи, обладает малым К термич расширен. Примен для изготовл лаборат посуды и в хим. пром., для изгот электрич ртутных ламп, надостатки – трудность обработки, хрупкость.
При окислении влажного фосфора наряду с Р2О5 и Р2О3 образуется фосфорноватая к-та (гексаоксодифосфорная) к-та Н4Р2О6, в которой СО фосфора +4. В ее структуре атомы фосфора связаны друг с другом непосредственно в отличие от полифосфорных кислот. Н4Р2О6 - к-та средней силы, все ее четыре атома водорода могут быть замещены на Ме. При нагревании ее водных р-ров к-та, присоединяя воду, распадается: Н4Р2О6 + Н2О = Н3РО3 + Н3РО4 Р-ры ее солей - гипофосфатов - в воде вполне устойчивы. Из гипофосфатов в воде хорошо р-римы лишь соли щелочных Ме. Наименьшая положительная СО фосфора в фосфорноватистой (диоксофосфорной) кислоте Н3РО2. Ее можно получить в свободном состоянии вытеснением из солей - гипофосфитов, например: Ва(Н2РО2)2 + Н24 = ВаSО4 + 2Н3РО2 Фосфорнофатистая к-та - бесцветные кристаллы, хорошо р-римые в воде. Таким образом, в фосфорноватистой кислоте СО фосфора +1, а его ковалентность равна 5. Н3РО2 - сильная к-та. Эта к-та и ее соли гипофосфиты являются сильнейшими восстановителями. Существуют и другие к-ты, содержащие фосфор - мононадфосфорная Н3РО5, динадфосфорную Н4Р2О8, тетраметафосфорная (НРО3)4, пирофосфорная Н4Р2О7. 50. Применение фосфора и его соед. Фосфорные удобрения. Красный фосфор в чистом виде применяют в спичечном производстве; в смеси с толченым стеклом и клеем его наносят на боковые поверхности спичечной коробки. Красный и белый фосфор используют при получении йодистоводородной и бромистоводородной кислот. Фосфид цинка Zn3Р2 применяют для борьбы с грызунами. Белый фосфор используют в военном деле для зажигательных бомб, а также для дымообразующих снарядов, шашек и гранат, дающих дымовые завесы. Применение радиоактивного изотопа фосфора Р32 позволило по-новому осветить поведение фосфора в растениях, почве и удобрениях. Исключительная чувствительность определения радиоактивного фосфора дает возможность следить за ходом поступления в растения фосфатов, за их распределением и превращениями внутри растений. Чистую фосфорную кислоту используют в пищевой и фармацевтической пром. Техническая фосфорная кислота идет для окрашивания тканей, производства эмалей, зубных пломб, а также для производства фосфорных удобрений (суперфосфат Са(Н2РО4)3 – удобрение с малым содерж питат вещ-в, дфойной суперфосфат 3 Са(Н2РО4)3 дешевле чем обычный), преципитат СаНРО4 нераств в н2О, но раств при внесении в кисл почвы. – простые; сложные: аммофос – взаимод фосфорной к-ты с аммиаком =NH4H2PO4 или (NH4)2H2PO4, нитрофоска – содержит N, P, K.) 53. С. Общ хар-ка, нахождение в природе. Аллотропия. Среднее содержание Са в земной коре 2,3*10-2 % по массе. Число собственных минералов Са - 112; исключительно велико число органических соед Са - углеводородов и их производных. Известны четыре кристаллические модификации Са: графит, алмаз, карбин и лонсдейлит. Графит - серо-черная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с Меическим блеском. При комнатной температуре и нормальном давлении (0,1 Мн/м2, или 1кгс/см2) графит термодинамически стабилен. Алмаз - очень твердое, крист-ое вещество. Кристаллы имеют кубическую гранецентрированную решетку: а=3,560Á. При комнатной температуре и нормальном давлении алмаз метастабилен. Заметное превращение алмаза в графит наблюдается при температурах выше 1400°С в вакууме или в инертной атмосфере. При атмосферном давлении и температуре около 3700°С графит возгоняется. Жидкий С может быть получен при давлении выше 10,5 Мн/м2 (1051 кгс/см2) и температурах выше 3700°С. Для твердого Са (кокс, сажа, древесный уголь) характерно также состояние с неупорядоченной структурой “аморфный” С, который не представляет собой самостоятельной модификации; в основе его строения лежит структура мелкокристаллического графита. Нагр нек разновидностей “аморфного” Са выше 1500-1600°С без доступа воздуха вызывает их превращение в графит. Физические свойства “аморфный” Са очень сильно зависят от дисперсности частиц и наличия примесей. Плотность, теплоемкость, теплопроводность и электропроводность “аморфный” Са всегда выше, чем графита. Карбин получен искусственно. Он представляет собой мелкокристаллический порошок черного цвета (плотность 1,9 - 2 г/см3). Построен из длинных цепочек атомов С, уложенных параллельно друг другу. Лонсдейлит найден в метеоритах и получен искусственно; его структура и свойства окончательно не установлены. Уникальная способность атомов углерода соединяться между собой с образованием прочных и длинных цепей и циклов привела к возникновению громадного числа разнообразных соед углерода, изучаемых органической химией. В соедх углерод проявляет CO -4; +2; +4. 54. Общ. хар-ка эл-тов IVA группы. СО эл-тов и типы соедин. У Ге проявл Ме св-ва из-за увелич R атома. у Ол и Пб они преоблад над Нем. Хаар-ные СО +2 и +4. 55. Карбиды. Их получ. и св-ва. При температурах выше 1000°С углерод взаимодействует со многими Ме, давая карбиды. Все формы углерода при нагревании восстанавливают окислы Ме с образованием свободных Ме (Zn, Cd, Cu, Pb и др.) или карбидов (CaC2, Mo2C, WC, TaC и др.). К. – кристалл-ие тела, природа хим связей различна (напр. э-ты 1,2, 3 гр ТМ – солеобраз соед с ионной связью). В К В и Si связь – ковалентная-высокая твердость, тугоплавкость, хим. инертность. Большинство Ме побочн подргупп обр К со связью, близкой к Ме
56. Стекло и керамика. Карбонат кальция, подобно соде, при сплавлении с пес­ком взаимодействует с ним, образуя силикат кальция и двуокись углерода. При сплавлении с избытком песка смеси карбонатов натрия и кальция получают переохлажденный взаимный р-р полисиликатов кальция и натрия; это и есть обыкновенное оконное стекло. Главное свойство всякого стекла заключается в том, что оно переходит из жидкого в твердое состояние не скачком, а загустевает по мере остывания постепенно вплоть до полного затвердевания. Стекло — аморфное вещество. Аморфные вещества отличаются от кристаллических тем, что атомы в них не образуют кристаллической решетки. Однако известная упорядоченность расположения атомов существует и в стеклах. Для плавленого кварца и силикатных стекол остаются в силе общие законы кристаллохимии силикатов; каждый атом кремния в них тетраэдрически окружен четырьмя атомами кислорода, но эти тетраэдры сочетаются друг с другом беспорядочно, образуя непрерывную пространственную сетку, в пустотах которой тоже беспорядочно располагаются ионы Ме (рис). Благодаря этому один «микроучасток» стекольной массы отличен по атомному строению от другого, соседствующего с ним. Этим и объясняется отсутствие у стекла постоянной точки плавления, постепенность перехода его из твердого в жидкое состояние и обратно. Как материал стекло широко используется в различии областях народного хозяйства, В соответствии с назначением известны разнообразные виды стекла: оконное посудное, тарное, химико-лабораторное, термическое, жаростойкое, строительное, оптическое, электровакуумное и многочисленные другие вид стекла технического. В пределах каждого вид стекла имеются самые разнообразные его сорта. Керамика – материалы и изд, изгот из огнеупорных вещ-в, напр из глины, карбидов и окс нек Ме. Различ строит(кирпич, черепица, трубы, облиц плиты), огнеуп(д/обкладки печей), хим. стройк (хим пром), бытов (фаянсовые и фарфоровые) и технич(изоляторы, конденсаторы, авто и авиа зажиг свечи, тиглей) керамику. Процесс изготоыл: пригот керам массы, формиров, сушка, обжиг. Обжиг глины: 3[Al2O3×2SiO2×2H2O]=3Al2O3×2SiO2+ 4SiO2+6H2O. Нек. керамич изд покрывают глазурью – тонкий слой стекловидного материала, кот делает керамику водонепрониц, предохр от загрязнений, защища от действ кислот щелочей 60. Германий, олово, свинец. Характер изменения строения и св-в простых вещ-в. Ох-ы и гидрОх-ы германия, олова и свинца. 1) Ge общ сод в земн коре 0,0007% (масс). Ge имеет серебристый цвет, по внешнему виду похож на Ме. При ткомн устойчив к действию воздуха, О2, Н2О, HCl, H2SO4разб. HNO3, H2SO4 окисляют Г. до диОха GeO2, особенно при нагрев: Ge+2H2SO4=GeO2+2SO2+2H2O. GeO2 – белые кристаллы, заметно раств в Н2О, р-р проводит эл. ток. Может быть получен нагреванием Г. в О2 или действием конц. азотн кисл. GeO2 – амфотерное соед с сильно преоблад кислотными св-вами, легко раств в щелочах. 2) Sn (0,04%), встречается в идее оловянного камня SnO2, из кот. получ путем восстановления углем. Sn – серебристо-белый мягкий Ме, легко прокатываемо. Видоизм. – серое олово, кристаллиз в кубической сис-ме и имеет меньшую плотность чем бело (тетрагональная сис-ма). Белое О уст-во при т>14, серое – ниже. На воздухе О при т.комн не окисляется, но нагретое выше т пл (231,9) постепенно превращается в SnO2. Н2О на О. не действейт. Разб HCl, H2SO4 действуют медленно из-за большого перенапряжения выделения Н2 на О. Конц р-ры этих к-т, особенно при нагрев, р-ряют О. С HNO3О взаимод тем интенс, чем выше концентрация. В разб обр-ся раств нитрат О: 4Sn+10HNO3=4Sn(NO3)2+NH4OH+3H2O, в конц – соед О (IV), гл. обр нер-римая b-оловянная к-та H2SnO3 и Ох азота (4) и Н2О.SnO – темно-бурый порошок, образующ при разложении Sn(OH)2 в атм СО2. Sn(OH)2- белый осадок при действии щелочей на соли олова (2) – амфотерное соед, легко раств в кислотах и щелочах, в посл. случ с образ гидроксостаннитов. 3) (С)винец (0,0016%), руда: свинцовый блеск PbS. С – голубовато-желтый тяжелый Ме. Мягок, режется ножом. Исп д/изгот оболочек кабеля и пластин аккумулятора. Входит в сос-в многих сплавов. На возд. С покрывается тонким слоем Ох, защищ. его от дальнейшего окисления. Н2О сама на С не действ, но в прис воздуха С постеп разр Н2О с обр-нием гидрОха свинца. При сопрокосн с жесткой Н2О С покрывается защитной пленкой (сульфата и осн карбоната), препятст дальнейшему разложению. Разб HCl и H2SO4 не действ. на С. В конц H2SO4 С интенс раств-ся с обр-нием р-римой соли Pb(HSO4)2. В азотной к-те С рас-ся легко, причм в неконц быстрее, чем в конц. В щелочах С р-ся с небольш скоростью, интенсивнее идет рат-ние в горячих разб. рас-рах, в рез обр гидроксоплюмбаты. (K4[Pb(OH)6]). Все раств соедин С ядовиты. Ох С(2) – желтый порошок, обр при нагр распл С на воздухе. После прокаливании при 500С стан красновато-желтым – глет. ГидрОх С (2) обр-ся при действии щел-чей на раст-мые соли С(2). Облад амфотерными св-вами. Двуокись с – темно-бурый порошок, обр при действии окисл на Ох или соли С (2). Амфотерный Ох с преоблад кисл св-в.
57. Применение С и его соед. С определяется тем, что свыше 90 % всех первичных источников потребляемой в мире энергии приходится на органическое топливо. Только около 10% добываемого топлива используется в кач сырья для основного органического синтеза и нефтехимического синтеза, для получения пластичных масс и др. С - важнейший биогенный элемент, составляющий основу жизни на Земле, структурная единица огромного числа органических соед, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, а также многочисленные низкомолекулярные биологически активные вещества - витамины, гормоны, медиаторы и др.). Значительную часть необходимой организмам энергии образуется в клетках за счет окисления С. Возникновение жизни на Земле рассматривается в современной науке как сложный процесс эволюции С соед. 58. Кремний. Общ характеристика, нахождение в природе. Получ, св-ва, применение. Si элемент (27,6%) на земле. Распр. соед Si – Ох Si SiO2 и производные кремниевых кислот, наз. силикатами. Ох Si (IV) встречается в виде минерала кварца (кремнезем, кремень).Наиб простым и удобным лабораторным способом получения Si является восстановление Оха Si SiO2 при высоких т Ме. Вследствие устойчивости Оха Si для восстан прим такие активные восстан, как Mg и Al: 3SiO2 + 4Al = 3Si + 2Al2O3. Спец легированный К. широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, управляемые диоды — тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.), применяют в инфракрасной оптике (см. также Кварц). К. придаёт сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность.К. идёт на синтез Siорганических соед и силицидов. К. образует тёмно-серые с Меическим блеском кристаллы, имеющие кубическую гранецентрированную решётку типа алмаза с периодом а = 5,431Å, плотностью 2,33 г/см3. К. хрупкий материал; заметная пластическая деформация начинается при температуре выше 800°С. В соедх К. (аналогично Су) 4-валентен. Однако, в отличие от Са, К. наряду с координационым числом 4 проявляет координационное число 6, что объясняется большим объёмом его атома (примером таких соед являются кремнефториды, содержащие группу [SiF6]2-). Химическая связь атома К. с другими атомами осуществляется обычно за счёт гибридных sp3-орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3d-орбиталей, обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у Са; 3,0 у азота и т. д.), К. в соедх с неМе электроположителен, и эти соед носят полярный характер. В присутст щелочи (катализ) Si вытесняет Н­2­ из Н2О. К-тф, кроме смеси фтороводородной и азотной, не действ на Si, но щелочи .нергично р-руют с ним, выделяя Н2 и образуя H2SiO­3 61. Германаты, станнаты, плюмбаты. Сульфиды германия, олова, свинца. Соли германиевой к-ты – германаты обра-ся при дейст Германия со щелочами в присутс Н2О2: Ge+2NaOH+2H2O2-NaGeO3+3H2O. Соед Г (2) малоустойчивы. Характернее соед Ге +4. 2)_ a-оловянная к-та H2SnO3 может быть получена действием водн р-ра аммиака на р-р хлорида О. Она легко рас-ся в щелочах, образуя соли – гидроксостаннаты.К-ты раст-ют a-олов к-ту с образованием солей олова (4). b-олов к-та получ дейтсв конц азотн к-ты на о. сос-в неопределен, как и со-в a-олов. Не рас-ся ни ф к-тах ни в щелочах, но сплавлением со щелочами можно перевести в р-р в виде станната. При действии H2S на хлориды олова (2) получ бурый осадок сульфида Олова (2), из SnCl4 Хар-ны восстан св-ва. Получ SnS2. – сусальное золото. SnS2 раств в р-рах сульфидов ЩеМе и аммония, причем получ легко раств соли триоловянной к-ты H2SnS3 (свободн не и звестна). SnS не раств в сульфидах ЩеМе и аммония, но полисульфиды аммония и щелочных Ме раств его с обр тристаннатов. 3) Плюмбиты получаются при сплавлении Pb(OH)2 c сухими щелочами: Pb(OH)2+2NaOH-Na2PbO2+2H2O. PbS обр-ся в идее черного осадка при действии Н2S на соли свинца (2), быстро темнееи, если в воздухе есть даже незнач кол-во сероводорода. Восстан св-ва не хар-ны. Соли несущ-щей в своб сос-нии свинц к-те H3PbO3 наз. плюмбатами. Напр при сплавл С с СаО обр-ся плюмбат Са. Большинство плюмбатов нераств в Н2О, раств-мы плюмбаты К и натрия 62. Водородные соедин. Si, их получ и св-ва. Силициды Ме. С. по типу хим связи могут быть подразделены на три основные группы: ионно-ковалентные, ковалентные и Меоподобные. Ионно-ковалентные С. образуются щелочными (за исключением натрия и калия) и щёлочноземельными Ме, а также Ме подгрупп меди и цинка; ковалентные — бором, углеродом, азотом, кислородом, фосфором, серой, их называют также боридами, карбидами, нитридами кремния) и т. д.; Меоподобные — переходными Ме. Получают С. сплавлением или спеканием порошкообразной смеси Si и соответствующего Меа: нагреванием окислов Ме с Si, SiC, SiO2 и силикатами природными или синтетическими (иногда в смеси с углеродом); взаимодействием Меа со смесью SiCl4 и H2; электролизом расплавов, состоящих из K2SiF6 и окисла соответствующего Меа. Ковалентные и Меоподобные С. тугоплавки, стойки к окислению, действию минеральных кислот и различных агрессивных газов. С. используются в составе жаропрочных Меокерамических композиционных материалов для авиационной и ракетной техники. Силаны (от лат. Silicium — кремний), соед кремния с водородом общей формулы SinH2n+2. Получены силаны вплоть до октасилана Si8H18. При комнатной температуре первые два К. — моносилан SiH4 и дисилан Si2H6 — газообразны, остальные — летучие жидкости. Все К. имеют неприятный запах, ядовиты. К. гораздо менее устойчивы, чем алканы, на воздухе самовоспламеняются, например 2Si2H6+7O2=4SiO2+6H2O. Н2О разлагаются: Si3H8+6H2O=3SiO2+10H2. В природе К. не встречаются. В лаборатории действием разбавленных кислот на силицид магния получают смесь различных К., её сильно охлаждают и разделяют (путём дробной перегонки при полном отсутствии воздуха).
63. Электролиз расплавов солей и гидрОх-в щеме. Процесс на катоде при эл-зе щеме: Меn+ не восстан, 2Н2О+2е-Н2+2ОН-. Проц на аноде зависит от природы анода: если анод инертный (уоль, графит, Рt, Au), то при электр рас-в щелочей идет окисл гидрОх-ионов. 4ОН-- 4е-­O2+2H2O, при электролизе бескислородных солей ЩеМе идет оксил аниона (кроме фторида) Асm- - me-Ac0. Если анод раств идет окисление Ме анода: Me0-ne-Men+. 64. Вследствие легкой оксисляемости в природ встреч исключ в виде соед. Na и К-распр эл-ты. Оба эл-та входят в сос-в горн попрод силикатного типа. Ли, Рб и Цз распростра меньше, все известные изотопы Фр радиоактивны. Важнейшие минералы натрия: NaCl (каменная соль, галит), Na2SO4×10H2O (мирабилит, глауберова соль), Na3AlF6 (криолит), Na2B4O7×10H2O (бура) и др. В сочетании с другими элементами он входит в состав многих природных силикатов и алюмосиликатов. Огромное кол-во солей натрия находится в гидросфере. Абсолютное содержание натрия в морской воде около 1,5×1016m. Na получают в больших количествах электролизом расплава NaCl с добавками CaCl2, KCl и другими для понижения температуры плавления. Литий получают электролизом расплава эвтектической смеси LiCl – KCl. Его хранят под слоем вазелина или парафина в запаянных сосудах. В технике калий получают натриетермическим методом из расплавленного гидрОха или хлорида, рубидий и цезий – методами Меотермии и термическим разложением соед. ЩеМе хар-ся незнач. твердостью, малой плотнойстью и низкими т пл и кпи.

67. Соли щелочных Ме

Во всех своих соедх щелочные Меы существуют в виде однозарядных катионов. Это относиться как к бинарным соедм – галогенидам, халькогенидам, нитридам, карбидам, так и к солям со сложными многоатомными анионами.