Смекни!
smekni.com

Химические волокна (стр. 1 из 2)

Волокна, получаемые из органических природных и синтетических полимеров называются химическими волокнами. В зависимости от вида исходного сырья химические волокна подразделяются на синтетические (из синтетических полимеров) и искусственные (из природных полимеров). Иногда к химическим волокнам относят также волокна, получаемые из неорганических соединений (стеклянные, металлические, базальтовые, кварцевые). Химические волокна выпускают в промышленности в виде: 1) моноволокна (одиночное волокно большой длинны); 2) штапельного волокна (короткие отрезки тонких волокон); 3) филаментных нитей (пучок состоящий из большого числа тонких и очень длинных волокон, соединённых по средствам крутки). Филаментные нити в зависимости от назначения разделяются на текстильные и технические, или кордные нити (более толстые нити повышенной прочности и крутки).

Историческая справка. Возможность получения химических волокон из различных веществ (клей, смолы) предсказывалась ещё в 17 и 18 веках, но только 1853 англичанин Аудемарс впервые предложил формовать бесконечные тонкие нити из раствора нитроцеллюлозы в смеси спирта с эфиром, а в 1891 французский инженер И. де Шардонне впервые организовал выпуск подобных нитей в производственном масштабе. С этого времени началось быстрое развитие производства химических волокон. В 1896 освоено производство медноаммиачного волокна из растворов целлюлозы в смеси водного аммиака и гидроокиси меди. В 1893 англичанами Кроссом, Бивеном и Бидлом предложен способ получения вискозных волокон из водно-щелочных растворов ксантогената целлюлозы, осуществлённый в промышленном масштабе в 1905. В 1918 –1920 разработан способ производства ацетатного волокна из раствора частично омылённой ацетилцеллюлозы в ацетоне, а 1935 организованно производство белковых волокон из молочного казеина. Производство синтетических волокон началось с выпуска в 1932 поливинилхлоридного волокна (Германия). В 1940 в промышленном масштабе выпушено наиболее известное синтетическое волокно – полиамидное (США). Производство в промышленном масштабе полиэфирных, полиакрилонитрильных и полиолефиновых синтетических волокон осуществлено в 1954 –1960.

Свойства. Химические волокна часто обладают высокой разрывной прочностью [до 1200 Мн/м2 (120кгс/мм2)], значит разрывным удлинением, хорошей формоустойчивостью, несминаемостью, высокой устойчивостью к многократным и знакопеременным нагружениям, стойкостью к действиям света, влаги плесени, бактерий, хемо- и термостойкостью. Физико-механические и физико-химические свойство химических волокон можно изменять в процессах формования, вытягивания, отделки и тепловой обработки, а также путём модификации как исходного сырья (полимера), так и самого волокна. Это позволяет создавать даже из одного исходного волокнообразующего полимера химические волокна обладающие разнообразными текстильными и другими свойствами (таблица). Химические волокна можно использовать в смесях с природными волокнами при изготовлении новых ассортиментов текстильных изделий, значительно улучшая качество и внешний вид последних.

О с н о в н ы е с в о й с т в а х и м и ч е с к и х в о л о к о н

Вид волокна Плот ностьг/см3 Прочность Удлинение, % Набухание в воде, % Влагопо- глощение при 20С и 65%относит влажности,%
Сухого волокна кгс/мм2 мокрого волокна волокна в петле сухого волокна мокроговолокна
% от прочности сухого
И с к у с с т в е н н ы е в о л о к н а
Ацетатное (текст. Нить) 1.32 16-18 65 85 25-35 35-45 20-25 6,5
Триацетатноештапельн. волок. 1,30 14-23 70 85 22-28 30-40 12-18 4.0
Вискозные волокна:штапельн. обычноештапельн.высокопрочноештапельн.высокомодуль.текст.нить обычнаятекст. нить высокопрочн. 1,52 1,52 1,52 1,52 1,52 32-37 50-60 50-82 32-37 45-82 55 75 65 55 80 35 40 25 45 35 15-23 19-28 5-15 15-23 12-16 19-28 25-29 7-20 19-28 20-27 95-120 62-65 55-90 95-120 65-70 13.0 12,0 12,0 13,0 13,0
Медноаммиачные волокна:штапельное волокнотекст. нить 1,52 1,52 21-26 23-32 65 65 70 75 30-40 10-17 35-50 15-30 100 100 12,5 12,5
С и н т е т и ч е с к и е в о л о к н а
Полиамидные(капрон):текст. нить обычнаято же, высокопрочнаяштапельное волокно 1,14 1,14 1,14 46-64 74-82 41-62 85-90 85-90 80-90 85 80 75 30-45 15-20 45-75 32-47 16-21 10-12 9-10 10-12 4,5 4,5 4,5
Полиэфирное(лавсан):текст. нить обычнаято же, высокопрочная штапельное волокно 1,38 1,38 1,38 52-62 80-100 40-58 100 100 100 90 80 40-80 18-30 8-15 20-30 18-30 8-15 20-30 3-5 3-5 3-5 0,35 0,35 0,35
Полиакрилонитрил.(нитрон)технич. нитьштапельное волокно 1,17 1,17 46-56 21-32 95 90 72 70 16-17 20-60 16-17 20-60 2 5-6 0,9 1,0
Поливинилспиртовоештапельное волокно 1,30 47-70 80 35 20-25 20-25 25 3,4
Поливинилхлоридноештапельное волокно 1,38 11-16 100 60-90 23-180 23-180 0 0
Полипропиленовоеволокно:текст. нитьштапельное волокно 0,90 0,90 30-65 30-49 100 100 80 90 15-30 20-40 15-30 20-40 0 0 0 0
Полиуретановая нить(спандекс) 1,0 5-10 100 100 500-1000 500-1000 - 1,0

Производство. Для производства химических волокон из большого числа существующих полимеров применяют лишь те, которые состоят из гибких и длинных макромолекул, линейных или слаборазветвлённых, имеют достаточно высокую молекулярную массу и обладают способностью плавится без разложения или растворятся в доступных растворителях. Такие полимеры принято называть волокнообразующими. Процесс складывается из следующих операций:

1) приготовления прядильных растворов или расплавов; 2) формирования волокна;

3) отделки сформированного волокна.

Приготовление прядильных растворов (расплавов) начинают с перевода исходного полимера в вязкотекучее состояние (раствор или расплав). Затем раствор (расплав) очищают от механических примесей и пузырьков воздуха и вводят в него различные добавки для термо- или светостабилизации волокон, их матировки и т. п. Подготовленный т. о. Раствор или расплав подаётся на прядильную машину для формирования волокон.

Формирование волокон заключается в продавливании прядильного раствора (расплава) через мелкие отверстия фильеры в среду, вызывающую затвердение полимера в виде тонких волокон. В зависимости от назначения и толщины формируемого волокна количество отверстий и их диаметр в фильере могут быть различными. При формировании химических волокон из расплава полимера (например, полиамидных волокон) средой вызывающей затвердевание полимера, служит холодный воздух. Если формирования проводят из раствора полимера в летучем растворителе (например, для ацетатных волокон), такой средой является горячий воздух, в котором растворитель испаряется. При формировании волокна из раствора полимера в нелетучем растворителе (например, вискозного волокна) нити затвердевают, попадая после фильеры в специальный раствор, содержащий различные реагенты, т. н. осадительную ванну («мокрый» способ формирования). Скорость формирования зависит от толщины и назначения волокон, а также от метода формирования. При формировании из расплава скорость достигает 600-1200 м/мин, из раствора по «сухому» способу – 300-600 м/мин, по «мокрому» способу – 30-130 м/мин. Прядильный раствор (расплав) в процессе превращения струек вязкой жидкости в тонкие волокна одновременно вытягивается (фильерная вытяжка). В некоторых случаях волокно дополнительно вытягивается непосредственно после выхода с прядильной машины (пластификационная вытяжка), что приводит к увеличению прочности химических волокон и улучшению их текстильных свойств.

Отделка химических волокон заключается в обработке свежесформованных волокон различными реагентами. Характер отделочных операций зависит от условия формирования и вида волокна. При этом из волокон удаляются низкомолекулярные соединения (например из полиамидных волокон), растворители (например из полиакрилонитрильных волокон), отмываются кислоты, соли и другие вещества, увлекаемые волокнами из осадительной ванны (например вискозными волокнами). Для придания волокнам таких свойств, как мягкость, повышенное скольжение, поверхностная склеиваемость одиночных волокон и др., их после промывки и очистки подвергают авиважной обработке или замасливанию. Затем волокна сушат на сушильных роликах, цилиндрах или в сушильных камерах. После отделки и сушки некоторые химические волокна подвергают дополнительной тепловой обработке – термофиксации (обычно в натянутом состоянии при 100-180 С), в результате которой стабилизируется форма пряжи, а также снижается последующая усадка как самих волокон, так и изделий из них вот время сухих и мокрых обработок при повышенных температурах.

Мировое производство химических волокон развивается быстрыми темпами. Это объясняется, в первую очередь, экономическими причинами (меньше затраты труда и капитальных вложений) и высоким качеством химических волокон по сравнению с природными волокнами. В 1968 мировое производство химических волокон достигало 36% (7,287 млн. т) от объёма производства всех видов волокон. Химические волокна в различных отраслях в значительной степени вытесняют натуральный щёлк, лён и даже шерсть. Предполагается, что к 2000 году производство химических волокон достигнет 20 млн. т. в год и сравняется с объёмом производства природных волокон.