Смекни!
smekni.com

Титан (стр. 2 из 3)

Рассмотрим несколько подробнее поведение чистого титана в различных агрессивных средах. Противостоит титан и эрозионной коррозии, происходя­щей в результате сочетания химического и механиче­ского воздействия на металл. В этом отношении он не уступает лучшим маркам нержавеющих сталей, спла­вам на основе меди и другим конструкционным мате­риалам. Хорошо противостоит титан и усталостной кор­розии, проявляющейся часто в виде нарушений целост­ности и прочности металла (растрескивание, локальные очаги коррозии и т. п.). Поведение титана во многих агрессивных средах, в таких, как азотная, соляная, серная, «царская водка» и другие кислоты и щелочи, вызывает удивление и восхищение этим металлом.

В азотной кислоте, являющейся сильным окислите­лем, в котором быстро растворяются очень многие ме­таллы, титан исключительно стоек. При любой кон­центрации азотной кислоты (от 10 до 99%-ной), при любых температурах скорость коррозии титана не превышает 0,1–0,2 мм/год. Опасна только красная дымящая азотная кислота, пересыщен­ная (20% и более) свободными диоксидами азота: в ней чистый титан бурно, со взрывом, реагирует. Од­нако стоит добавить в такую кислоту хотя бы немного воды (1–2% и более), как реакция заканчивается и коррозия титана прекращается.

В соляной кислоте титан стоек лишь в разбавлен­ных ее растворах. Например, в 0,5%-ной соляной кис­лоте даже при нагревании до 100° С скорость коррозии титана не превышает 0,01 мм/год, в 10%-ной при ком­натной температуре скорость коррозии достигает 0,1 мм/год, а в 20%-ной при 20° С–0,58 мм/год.Принагревании скорость коррозии титана в соляной кисло­те резко повышается. Так, даже в 1,5%-ной соляной кислоте при 100° С скорость коррозии титана состав­ляет 4,4 мм/год, а в 20%-ной при нагревании до 60° С – уже 29,8 мм/год. Это объясняется тем, что соляная кислота, особенно при нагревании, растворяет пассивирующую пленку диоксида титана и начинается растворение металла. Однако скорость коррозии титана в соляной кислоте при всех условиях остается ниже, чем у нержавеющих сталей.

В серной кислоте слабой концентрации (до 0,5–1% ) титан стоек даже при температуре раствора до 50–95° С. Стоек он и в более концентрированных раство­рах (10–20%-ных) при комнатной температуре, в этих условиях скорость коррозии титана не превышает 0,005–0,01 мм/год. Но с повышением температуры раствора титан в серной кислоте даже сравнительно слабой концентрации (10–20%-ной) начинает растворяться, причем скорость коррозии достигает 9–10 мм/год. Серная кислота, так же как и соляная, разрушает за­щитную пленку диоксида титана и повышает его растворимость. Ее можно резко понизить, если в растворы этих кислот добавлять определенное коли­чество азотной, хромовой, марганцевой кислот, соеди­нений хлора или других окислителей, которые быстро пассивируют поверхность титана защитной пленкой и прекращают его дальнейшее растворение. Вот почему титан практически единственный металл, не растворяю­щийся в «царской водке»: в ней при обычных темпе­ратурах (10–20° С) коррозия титана не превышает 0,005 мм/год. Слабо корродирует титан и в кипящей «царской водке», а ведь в ней, как известно, многие металлы, и даже такие, как золото, растворяются почти мгновенно.

Очень слабо корродирует титан в большинстве орга­нических кислот (уксусной, молочной, винной), в раз­бавленных щелочах, в растворах многих хлористых со­лей, в физиологическом растворе. А вот с расплавами хлоридов при температуре выше 375° С титан взаимо­действует очень бурно.

В расплаве многих металлов чистый титан обнару­живает удивительную стойкость. В жидких горячих магнии, олове, галлии, ртути, литии, натрии, калии, в расплавленной сере титан практически не корроди­рует, и лишь при очень высоких температурах распла­вов (выше 300–400° С) скорость его коррозии в них может достигать 1 мм/год. Однако есть немало агрес­сивных растворов и расплавов, в которых титан раство­ряется очень интенсивно. Главный «враг» титана – плавиковая кислота (HF). Даже в 1%-ном ее растворе скорость коррозии титана очень высока, а в более кон­центрированных растворах титан «тает», как лед в го­рячей воде. Фтор – этот «разрушающий все» (греч.) элемент – бурно реагирует практически со всеми ме­таллами и сжигает их.

Не может противостоять титан кремнефтористоводородной и фосфорной кислотам даже слабой концент­рации, перекиси водорода, сухим хлору и брому, спир­там, в том числе спиртовой настойке йода, расплавлен­ному цинку. Однако стойкость титана можно увеличить, если добавить различные окислители – так называемые ингибиторы, например в растворы соляной и серной кислот – азотную и хромовую. Ингибиторами могут быть и ионы различных металлов в растворе: железо, медь и др.

В титан можно вводить некоторые металлы, повы­шающие его стойкость в десятки и сотни раз, напри­мер до 10% циркония, гафния, тантала, вольфрама. Введение в титан 20–30% молибдена делает, этот сплав настолько устойчивым к любым концентрациям соля­ной, серной и других кислот, что он может заменить даже золото в работе с этими кислотами. Наибольший эффект достигается благодаря добавкам в титан четы­рех металлов платиновой группы: платины, палладия, родия и рутения. Достаточно всего 0,2% этих металлов, чтобы снизить скорость коррозии титана в кипящих концентрированных соляной и серной кислотах в десят­ки раз. Следует отметить, что благородные платинои­ды влияют лишь на стойкость титана, а если добавлять их, скажем, в железо, алюминий, магний, разрушение и коррозия этих конструкционных металлов не умень­шаются.

Физические и механические свойства титана

Титан весьма тугоплавкий металл. Долгое время считалось, что он плавится при 1800° С, однако в се­редине 50-х гг. английские ученые Диардорф и Хейс установили температуру плавления для чистого эле­ментарного титана. Она составила 1668±3° С. По своей тугоплавкости титан уступает лишь таким металлам, как вольфрам, тантал, ниобий, рений, молибден, пла­тиноиды, цирконий, а среди основных конструкцион­ных металлов он стоит на первом месте:

Важнейшей особенностью титана как металла явля­ются его уникальные физико-химические свойства: низ­кая плотность, высокая прочность, твердость и др. Главное же, что эти свойства не меняются существенно при высоких температурах.

Титан–легкий металл, его плотность при 0° С составляет всего 4,517 г/см8, а при 100° С – 4,506 г/см3. Титан относится к группе металлов с удельной мас­сой менее 5 г/см3. Сюда входят все щелочные металлы (натрий, кадий, литий, рубидий, цезий) с удельной массой 0,9–1,5 г/см3, магний (1,7 г/см3), алюминий (2,7 г/см3) и др. Титан более чем в 1,5 раза тяжелее алюминия, и в этом он, конечно, ему проигрывает, но зато в 1,5 раза легче железа (7,8 г/см3). Однако, зани­мая по удельной плотности промежуточное положение между алюминием и железом, титан по своим механи­ческим свойствам во много раз их превосходит.

Каковы же эти свойства, которые позволяют широко использовать титан как конструкционный материал? Прежде всего прочность металла, т. е. его способность сопротивляться разрушению, а также необратимому изменению формы (пластические деформации). Титан обладает значительной твердостью: он в 12 раз тверже алюминия, в 4 раза–железа и меди. Еще одна важная характеристика металла – предел текучести. Чем он выше тем лучше детали из этого металла сопротив­ляются эксплуатационным нагрузкам. Предел текучести у ти­тана почти в 18 раз выше, чем у алюминия. Удельная прочность сплавов титана может быть по­вышена в 1,5–2 раза. Его высокие механические свой­ства хорошо сохраняются при температурах вплоть до нескольких сот градусов.

Чистый титан пригоден для любых видов обработки в горячем и холодном состоянии: его можно ковать, как железо, вытягивать и даже делать из него проволоку, прокатывать в листы, ленты, в фольгу толщиной до 0,01 мм.

Интересно отметить, что титан долгие годы, вплоть до получения чистого металла, рассматривали как очень хрупкий материал. Связано это было с наличием в титане примесей, особенно водорода азота, кислорода, углерода и др. Если увеличение содержания кислорода и азота сразу сказывается на их механических свойствах, то влияние водорода более сложное и может проявляться не сразу, а в процессе эксплуатации изделия. Недооценка этого влияния при первых шагах применения титана привела к серьезным авариям. Многочисленные случаи неожиданных хрупких разрушений готовых титановых конструкций в авиации США даже стали причиной некоторого кризиса в производстве титана в 1945–1955 гг. Сегодня же водород специально вводят в титановые сплавы, как временный или постоянный легирующий элемент. Это позволяет сильно упростить многие технологические операции при изготовлении титановых изделий (горячую обработку давлением, резание, сварку, формовку) и улучшить их свойства. При необходимости водород удаляют отжигом в вакууме.

Титан имеет еще одно замечатель­ное свойство – исключительную стойкость в условиях кавитации, т. е. при усиленной «бомбарди­ровке» металла в жидкой среде пузырьками воздуха, которые образуются при быстром движении или вра­щении металлической детали в жидкой среде. Эти пу­зырьки воздуха, лопаясь на поверхности металла, вы­зывают очень сильные микроудары жидкости о поверх­ность движущегося тела. Они быстро разрушают мно­гие материалы, и металлы в том числе, а вот титан прекрасно противостоит кавитации. Испытания в морской воде быстровращающихся дисков из титана и других металлов показали, что при вращении в течение двух месяцев титановый диск практически не потерял в массе. Внешние края его, где скорость вращения, а следовательно, и кавитация мак­симальны, не изменились. Другие диски не выдержали испытания: у всех внешние края оказались поврежден­ными, а многие из них вовсе разрушились.

Титан обладает еще одним удивительным свойст­вом–«памятью». В сплаве с некоторыми металлами (например, с никелем, и особенно с никелкм и водородом) он «запоминает» форму изде­лия, которую из него сделали при определенной тем­пературе. Если такое изделие потом деформировать, например, свернуть в пружину, изогнуть, то оно оста­нется в таком положении на долгое время. После нагревания до той температуры, при которой это изде­лие было сделано, оно принимает первоначальную фор­му. Это свойство титана широко используется в косми­ческой технике (на корабле разворачиваются вынесен­ные в космическое пространство большие антенны, до этого компактно сложенные). Недавно это свойство ти­тана стали использовать медики для бескровных опе­раций на сосудах: в больной, суженный сосуд вводится проволочка из титанового сплава, а потом она, разогре­ваясь до температуры тела, скручивается в первона­чальную пружинку и расширяет сосуд.