Из 2-метилпиридина и формальдегида через промежуточный 2-гидроксиэтилпиридин в промышленности получают мономер 2-винилпиридин.
При синтезе алкилпиридинов в промышленности промежуточными стадиями также являются реакции альдольно-кротоновой конденсации, связанные с образованием иминов и дегидрированием. Так, из ацетальальдегида и аммиака над Al2O3 при 450оС образуется смесь a- и g-пиколина, конденсация чрезвычайно многогранна, в тех же условиях в присутствии формальдегида получают пиридин и b-пиколин, причем последний можно окислить далее до никотиновой кислоты.
Как показывают эти примеры, адольно-кротоновая и имеет важное препаративное значение для создания связей С-С.
Общие методики проведения Альдольно-кротоновой конденсации:
А. Конденсация алифатических альдегидов.
В трехгорлую колбу емкостью 250 мл, снабженную мешалкой, капельной воронкой и внутренним термометром, помещают 1 моль соответствующего альдегида (используют только свежеперегнанные альдегиды и кетоны) в 75 мл эфира. При охлаждении водой очень медленно прибавляют 15%-ный раствор 0.02 моля КОН в метаноле, причем температура в колбе должна поддерживаться в пределах 10-15оС. Затем перемешивают еще 1,5 ч при комнатной температуре, нейтрализуют эквимолярным количеством ледяной уксусной кислоты, отделяют осадок ацетата калия, сушат сульфатом натрия и перегоняют при возможно более низкой температуре.
Б. Конденсация алифатических альдегидов (кроме формальдегида) с кетонами.
В трегорлую колбу емкостью 500 мл, снабженную мешалкой, капельной воронкой, внутренним термометром, помещают кетон (свежеперегнанный) и прибавляют 0.03 моля КОН в виде 15%-ного метанольного раствора. Если кетон имеет только одну реакционноспособную группу (метильную или метиленовую), то берут 1 моль, во всех других случаях ‑ 3 моля, если хотят получить моноаддукт.
При интенсивном перемешивании и охлаждении водой прибавляют из капельной воронки (очень медленно, в течение 4-6 ч) 1 моль свежеперегнанного алифатического альдегида в 75 мл эфира (при температуре внутри колбы 10-15оС), а затем перемешивают еще 1.5 ч при комнатной температуре. После этого нейтрализуют ледяной уксусной кислотой, сушат сульфатом натрия и перегоняют.
В. Реакции ароматических альдегидов с кетонами.
В трегорлую колбу емкостью 1 л, снабженную мешалкой, капельной воронкой и внутренним термометром, помещают раствор 1 моля свежеперегнанных альдегида и кетона в 200 мл метилового спирта. Если берут кетоны с более чем с одной реакционноспособной метильной или метиленовой группой и хотят получить продукты моноконденсации, то молярное соотношение кетона к альдегиду должно составить 3:1; если хотят получить продукт конденсации двух молекул альдегида с 1 молекулой кетона, то это соотношение должно быть 0.5:1. К раствору при хорошем перемешивании прибавляют из капельной воронки 0.05 моля гидроксида калия в виде 15%-ного раствора в метаноле при температуре в колбе 20-25оС. Реакционную смесь перемешивают еще 3 ч, нейтрализуют ледяной уксусной кислотой, образовавшиеся твердые продукты реакции отфильтровывают и промывают водой. В других случаях реакционную смесь разбавляют водой и фильтруют или извлекают эфиром. Эфирные вытяжки промывают водой, сушат сульфатом натрия и перегоняют.
При получении нитростиролов следует брать 1 моль щелочи, вести реакцию в течение 0.5 ч и после этого вылить реакционную смесь в двойное молярное количество 20%-ной соляной кислоты.
II Постановка задачи.
В рамках фундаментального исследований, проводящихся в ИОХ РАН, необходимо было осуществить синтез ряда продуктов альдольно-кротоновой конденсации: ароматических альдегидов (в качестве карбонильных компонентов) с метилалкил- и метиларилкетонами (в качестве метиленовых компонентов).
В нашу задачу также входила оптимизация методики синтеза соединений данного типа. В качестве основного приема оптимизации мы запланировали проведение реакции конденсации в насыщенном водно-спиртовом растворе исходных веществ с добавлением водного раствора щелочи. (Согласно основной литературной методике реакцию проводят в спиртовом растворе [1]) Поскольку продукты конденсации, как правило, существенно хуже растворимы, чем исходные вещества мы рассчитываем, что целевые продукты будут выделяться в виде осадка; т.е. уходить из сферы реакции, что ,по-нашему мнению, может ослабить процессы более глубокой конденсации и привести к упрощению методики выделения продуктов реакции.
Мы полагали, что особенно актуальной может оказаться такая оптимизация для синтеза соединений, содержащих 2 метиленовых компонента (например, ацетон
), чтобы свести к минимуму образование продуктов бис-конденсации.III Обсуждение результатов.
Мы осуществили синтез 15 продуктов альдольно-кротоновой конденсации. Структура и чистота которых подтверждена методом ПМР-спектроскопии. Благодаря оптимизации методики были получены чистые вещества, выделение которых из реакционной смеси стало более простым по сравнению с выделением продуктов, по литературной методике. В частности, в большинстве случаев удалось избежать необходимости перекристаллизацию.
В результате реакции альдольно-кротоновой конденсации получены ожидаемые продукты с выходом ‑ 50-90%.
Так же мы получили практически чистый продукт моно-конденсации при реакции анисового альдегида с ацетоном.
IV Выводы.
1) Осуществили синтез 15 целевых продуктов количество. Структура подтверждена данными ПМР спектров.
2) Адаптирована и оптимизирована применительно к синтезу целевых продуктов литературная методика.
V Экспериментальная часть.
Осуществили синтез следующих продуктов:
№ | Формула | tплo |
1 | 150-152 | |
2 | 65-68 | |
3 | 90-91 | |
4 | 77-79 | |
5 | 98-100 | |
6 | 106-107 | |
7 | 124-125 | |
8 | 65-67 | |
9 | 202-205 | |
10 | 177-180 | |
11 | 145-146 | |
12 | 148-150 | |
13 | 143-153 | |
14 | 99-100 | |
15 | 95-97 |
VI Спектры.
Хим. Сдвиг | Константа спин-спинового расщепления | |
CH3 | 721.94 | |
H5 | 1984.22 | 1.34 |
H6 | 1987.58 | 1.34 |
H7 | 2200.86 | 8.05 |
2262.57 | 6.04 | |
2321.59 | 1.35 | |
H6 | 2390.01 | 8.05 |
Хим. Сдвиг | Константа спин-спинового расщепления | |
H5 H6 | 1.01 | 0.0112 0.0134 0.01343 0.0906 0.1587 0.16 |
H7 | 2.21 | 0.0156 0.0112 0.0134 0.0156 |
H3 | 6.94 | 0.0537 |
7.58 | 0.0536 | |
7.69 | 0.0274 | |
8.23 | 0.029 |