Смекни!
smekni.com

Растворы и растворимость (стр. 2 из 4)

. Вещество Температура, ° C
0 20 50 80 100
KBr 53,5 65,2 80,8 94,6 103,3
NaCl 35,7 35,9 36,8 38,1 39,4
CaSO4 0,176 0,206 0,180 0,102 0,066

Таблица 7-3. Влияние температуры на растворимость некоторых твердых веществ. В таблице приведена растворимость в г/100 г воды

Рис. 7-3. Кривые растворимости твердых (а) и газообразных (б) веществ.

С помощью таких операций очищают вещества. Дело в том, что при охлаждении ненасыщенного раствора образуется насыщенный раствор, но насыщенный по основному веществу, которого больше всего, а не по примесям. Поэтому при охлаждении в осадок выпадает только чистое вещество, а примеси (вместе с частью вещества) остаются в растворе.

Чистые кристаллы отфильтровывают от охлажденного, загрязненного примесями раствора. Этот способ очистки называется ПЕРЕКРИСТАЛЛИЗАЦИЕЙ. Так очищают, например, многие лекарственные препараты.

Предельная растворимость многих веществ в воде (или в других растворителях) представляет собой постоянную величину, соответствующую концентрации насыщенного раствора при данной температуре. Она является качественной характеристикой растворимости и приводится в справочниках в граммах на 100 г растворителя (при определённых условиях).

Растворимость зависит от природы растворяемого вещества и растворителя, температуры и давления.

Природа растворяемого вещества. Кристаллические вещества подразделяются на:

P - хорошо растворимые (более 1,0 г на 100 г воды);

M- малорастворимые (0,1 г - 1,0 г на 100 г воды);

Н- нерастворимые (менее 0,1 г на 100 г воды).

(Смотри таблицу растворимости)

Природа растворителя. При образовании раствора связи между частицами каждого из компонентов заменяются связями между частицами разных компонентов. Чтобы новые связи могли образоваться, компоненты раствора должны иметь однотипные связи, т.е. быть одной природы. Поэтому ионные вещества растворяются в полярных растворителях и плохо в неполярных, а молекулярные вещества - наоборот.

Влияние температуры. Если растворение вещества является экзотермическим процессом, то с повышением температуры его растворимость уменьшается (Например,Ca(OH)2 в воде) и наоборот. Для большинства солей характерно увеличение растворимости при нагревании.

Практически все газы растворяются с выделением тепла. Растворимость газов в жидкостях с повышением температуры уменьшается, а с понижением увеличивается.

Влияние давления. С повышением давления растворимость газов в жидкостях увеличивается, а с понижением уменьшается.

КОНЦЕНТРАЦИЯ РАСТВОРОВ

Способы выражения концентрации растворов

Существуют различные способы выражения состава раствора. Наиболее часто используют массовую долю растворённого вещества, молярную и нормальную концентрацию.

Массовая доля растворённого веществаw(B) - это безразмерная величина, равная отношению массы растворённого вещества к общей массе раствора m :

w(B)= m(B) / m

Молярная концентрацияC(B) показывает, сколько моль растворённого вещества содержится в 1 литре раствора.

C(B) = n(B) / V = m(B) / (M(B) • V),

где М(B) - молярная масса растворенного вещества г/моль.

Концентрацию раствора можно выразить количеством молей растворённого вещества в 1000 г растворителя. Такое выражение концентрации называют моляльностью раствора.

Нормальность раствора обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора.

Грамм - эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту. Для сложных веществ - это количество вещества, соответствующее прямо или косвенно при химических превращениях 1 грамму водорода или 8 граммам кислорода.


Эоснования = Моснования / число замещаемых в реакции гидроксильных групп
Экислоты = Мкислоты / число замещаемых в реакции атомов водорода
Эсоли = Мсоли / произведение числа катионов на его заряд

Величины нормальности обозначают буквой "Н". Например, децинормальный раствор серной кислоты обозначают "0,1 Н раствор H2SO4". Так как нормальность может быть определена только для данной реакции, то в разных реакциях величина нормальности одного и того же раствора может оказаться неодинаковой. Так, одномолярный раствор H2SO4 будет однонормальным, когда он предназначается для реакции со щёлочью с образованием гидросульфата NaHSO4, и двухнормальным в реакции с образованием Na2SO4.

Пересчет концентраций растворов из одних единиц в другие

При пересчете процентной концентрации в молярную и наоборот, необходимо помнить, что процентная концентрация рассчитывается на определенную массу раствора, а молярная и нормальная - на объем, поэтому для пересчета необходимо знать плотность раствора. Если мы обозначим: с - процентная концентрация; M - молярная концентрация; N - нормальная концентрация; э - эквивалентная масса,  - плотность раствора; m - мольная масса, то формулы для пересчета из процентной концентрации будут следующими:

M = (c • p • 10) / m

N = (c • p • 10) / э

Этими же формулами можно воспользоваться, если нужно пересчитать нормальную или молярную концентрацию на процентную.

Иногда в лабораторной практике приходится пересчитывать молярную концентрацию в нормальную и наоборот. Если эквивалентная масса вещества равна мольной массе (Например, для HCl, KCl, KOH), то нормальная концентрация равна молярной концентрации. Так, 1 н. раствор соляной кислоты будет одновременно 1 M раствором. Однако для большинства соединений эквивалентная масса не равна мольной и, следовательно, нормальная концентрация растворов этих веществ не равна молярной концентрации.

Для пересчета из одной концентрации в другую можно использовать формулы:

M = (N • Э) / m

N = (M • m) / Э

Растворимость твердых веществ

Растворимость веществ, являющихся твердыми при температуре растворения, выражена через массовый коэффициент растворимости k (в граммах безводного вещества на 100 г воды). Как правило, растворимость приведена в холодной (20 °С) и горячей воде (80 С), иная температура указана верхним индексом, причем значок * отвечает интервалу комнатной температуры (18-25° С). Прочерк отвечает полному разложению вещества водой. Многоточие означает отсутствие данных.

Вещество k, 20° k, 80° Вещество k, 20° k, 80°
AgF 172 216 KNO2 306,7 376
AgNO3 227,9 635,3 KNO3 31,6 168,8
AlCl3 45,9 48,6 KOH 112,4 162,5
Al2(SO4)3 36,4 73,1 K3PO4 98,5 178,560
B(OH)3 4,87 23,54 K2SO3 107,0 111,5
BaCl2 36,2 52,2 K2SO4 11,1 21,4
Ba(OH)2 3,89 101,4 K2S2O6(O2) 4,7 11,040
BaS 7,86 49,91 LiCl 84,525 112,3
BeCl2 72,8 77,030 LiOH 12,8 15,3
BeSO4 39,1 67,2 Li2SO4 34,7 31,975
CaCN2 2,5025 - MgCl2 54,8 65,8
CaCl2 74,5 147,0 MgSO4 35,1 54,8
Ca(ClO)2 33,325 - MnCl2 73,9 112,7
Ca(NO3)2 129,3 358,7 MnSO4 62,9 45,6
CdCl2 113,4 140,4 (NH4)2CO3 10015 -
CdSO4 76,4 67,2 NH4Cl 37,2 65,6
CrCl3 34,925 - N2H5Cl 17925
Cr2(SO4)3 6425 NH4F 82,6 117,6
CsCl 186,5 250 NH4HCO3 21,7 -
CsOH 385,615 30330 NH4HS 128,10 -
CuCl2 72,7 96,1 NH4NCS 170 431
CuSO4 20,5 55,5 NH4NO3 192,0 580,0
FeCl2 68 90,7 (NH3OH)Cl 83 194
FeCl3 91,9 - (NH4)2SO4 75,4 94,1
Fe(NH4)2(SO4)2 26,4 5270 Na2B4O7 2,5 24,3
FeSO4 26,6 43,7 Na2CO3 21,8 45,1
Fe2(SO4)3 440* - NaCl 35,.9 38,1
H2C2O4 9,52 84,5 NaClO 53,4 129,950
H2(PHO3) 69430 NaClO2 64 12260
H3PO4 548 NaClO3 95,9 203,9100
H2SeO4 566,6 275350 NaClO4 21125 30075
H6TeO6 50,0530 106,4 NaHCO3 9,59 20,2
HgCl 6,59 24,2 NaH2PO4 85,2 207,3
K[Ag(CN)2] 25 100 Na2HPO4 7,660 92,4
KAl(SO4)2 5,9 71,0 NaHSO4 28,6 50100
K[Au(CN)2] 14* 200 NaNO2 82,9 135,5
KBr 65,2 94,6 NaNO3 87,6 149
KBrO3 6,87 34,28 NaOH 108,7 314
KCN 69,9 99,8 Na(PH2O2) 8325 554100
K2CO3 111,0 139,2 Na2(PHO3) 4190
KCl 34,4 51,1 Na3PO4 14,525 68,0
KClO3 7,3 37,6 Na2S 18,6 49,2
K2CrO4 63,0 75,1 Na2SO3 26,1 29,0
K2Cr2O7 12,48 73,01 Na2SO4 19,2 43,3
KCr(SO4)2 12,5125 Na2(SO3S) 70,1 229
KF 94,93 150,1 NiCl2 64,0 86,275
K3[Fe(CN)6] 46,0 81,8 NiSO4 38,4 66,7
K4[Fe(CN)6] 28,0 67,0 Pb(NO3)2 52,2 107,4
KHCO3 33,3 68,370 RbCl 91,1 127,2
K(HF2) 39,2 114 RbOH 17915 28247
KH2PO4 22,6 70,4 SnCl2 269,815 -
K2HPO4 159,8 267,563 SnSO4 18,819 -
KI 144,5 190,7 SrCl2 53,1 93,1
KIO3 8,1 24,8 TlNO3 9,55 111
KMnO4 6,36 2565 TlOH 34,318 126,190
KCN 69,9 99,8 ZnCl2 367 549
KNCS 217 40867 ZnSO4 54,1 67,2

Дисперсные и коллоидные системы. Растворы

Дисперсные системы.В природе и технике часто встречаютсядисперсные системы, в которых одно вещество равномерно распределено в виде частиц внутри другого вещества.