Смекни!
smekni.com

Полимеры (стр. 6 из 8)

Для изготовления ПП по аддитивной технологии требуются диэлектрики с металлическими включениями, образующими цен­тры кристаллизации при химическом меднении. Для этой цели выпускается слоистый пластик—диэлектрик, содержащий мелкодисперсные частицы металлов—Ag или V.

Качество печатных плат характеризуется следующими свой­ствами.

1. Прочность является одним из основных свойств, поскольку печатные платы выполняют роль не только диэлектрического осно­вания, но и несущей конструкции. Часто требуется вибропроч­ность, которой, особенно при больших размерах плат, стеклотекстолит не обладает. Следует иметь в виду, что удельная прочность при толщине, большей, чем 1,5 мм, начинает снижаться, так как затрудняется удаление летучих веществ при отверждении и ска­зывается градиент температуры, который, как и в случае стекла, проявляется в виде микротрещин на поверхности. Это служит еще одним примером размерного эффекта прочности.

2. Нагревостойкость фольгированных слоистых пластиков опре­деляется по отсутствию вздутий, расслаивания и отклеивания фольги, возникающих при пайке. Критерием является время, в секундах, в течение которого разрушения не наблюдаются при нагреве до 533 К (260 °С). Минимальная нагревостойкость — 5 с, у лучших марок—20 с.

3. Стабильность размеров — изменение длины при смене тем­ператур в процессе пайки, когда вся плата перегревается при­мерно до 393 К (120°С); ТКЛР стеклотекстолита при толщине 1,5 мм составляет 8-10-6 К-1, т. е. отличается от ТКЛР меди более чем в 2 раза, поэтому при больших размерах плат возмо­жен обрыв или отслоение фольги. Кроме того, при Т~370 К в эпоксидных смолах наблюдается фазовый переход, выше которого резко возрастает ТКЛР в направлении толщины слоистого пла­стика, приводящий к обрыву металлизации отверстий. Нестабиль­ность размеров проявляется также в виде неплоскостности — прогиба, коробления, скручивания, которые возникают вследствие механических напряжений.

4. Электрическая прочность стеклотекстолита анизотропна: в продольном направлении она в несколько раз выше, чем в на­правлении толщины. Причина этому—анизотропия самого мате­риала и наличие микротрещин, уменьшающих эффективную тол­щину, но не длину и ширину. С увеличением толщины электри­ческая прочность падает. Так, для плат толщиной 0.5 и 10ммзначение £np соответственно 30 и 10 кВ/мм.

Наименьшее расстояние между соседними проводниками ПП составляет 0,3 мм, при этом допустимое напряжение—50 В. При большем напряжении это расстояние надо увеличивать, на­пример, напряжение 175 В требуют промежутка 0,8 мм, но пре­дельное напряжение 250 В. Для напряжения 500 В печатный монтаж невозможен.

Недостатки фольгированных стеклотекстолитов являются след­ствием их неоднородной структуры и особенностей используемых материалов. Это—коробление, нестабильность размеров, растрескивание, отслаивание, воспламеняемость, наволакивание смолы при сверлении отверстий. Кроме того, повышение плотности мон­тажа, использование групповых методов пайки, тяжелые условия эксплуатации требуют использования связующих, обладающих большей теплостойкостью. Наконец, стеклотекстолит из-за высо­кого tg6 непригоден для СВЧ-техники.

Печатные платы на термопластах. Применение термопластов для изготовления ПП имеет следующие преимущества:

1. Повышение нагревостойкости до 700 К.

2. Возможность применения в СВЧ-аппаратуре благодаря малым значениям tg6.

3. Упрощение технологии изготовления переходных отверстий, возможность формовки углублений, монтажных фланцев. Лучшим материалом для этой цели является фторопласт, армированный стеклотканью и фольгированный с двух сторон. Его выпускают в виде листов толщиной 0,5 мм под маркой фторопласт-4Д арми­рованный, фольгированный (ТУ 6-05-164-78). Он нагревостоек до Т=520 К, имеет tg

=0,0007 при частоте 1010 Гц и пригоден для СВЧ-техники.

В качестве ПП начинают применять и фольгированную полиимидную пленку, однако преи­мущества полиимида более полно реализуются, когда он исполь­зуется в качестве подложек многослойных тонкопленочных ком­мутационных ПП. Отметим, что и фторопласт, и полиимид при­мерно в 10 раз дороже стеклотекстолита, их применение должно быть строго обосновано.

СИНТЕТИЧЕСКИЕ ЭМАЛИ, ЛАКИ И КОМПАУНДЫ

Общая черта этих материалов состоит в том, что они образуют прочную твердую пленку, способную защищать, пассивировать поверхность изделий или придавать им товарный вид.

Компоненты современной РЭА и ее сборочные единицы—ра­диоэлектронные ячейки—имеют небольшие размеры, почти не содержат механически перемещаемых деталей, часто вскрывае­мых крышек или отверстий. Это создает возможность защищать блоки и ячейки пленкой—сплошной оболочкой из лака, эмали или компаунда. Такой способ защиты и одновременно придания прочности называют бескорпусной герметизацией. Он обладает преимуществами по сравнению с герметизацией в корпусе (деше­визна, технологичность, малые размеры, возможность полной автоматизации). Однако такие оболочки, непосредственно примы­кающие к поверхности твердотельного активного прибораилипроводника и резистора, могут не только подавлять массообмен между изделием и внешней средой, но и участвовать в нежела­тельных физико-химических процессах, влияющих на работоспо­собность РЭА. В этом случае необходимо учитывать и физиче­скую, и химическую совместимости материалов, что ставит перед конструктором новые, трудные задачи.

Дестабилизирующие процессы в результате взаимодействия твердотельного прибора или элемента с атмосферой протекают обычно медленно, а их проявления неочевидны и многообразны. Среди них—коррозия пленочных и печатных проводников, элек­тромиграция, механические напряжения и деформации, обрывы внутренних проволочных соединений и др. В силу своей природы особенно чувствительны к внешним воздействиям полупроводни­ковые приборы, для защиты которых приходится использовать комбинацию материалов и методов. Лаки, эмали и компаунды применяют не только в качестве оболочек компонентов, но и для герметизации крышек корпусов РЭА и ее блоков, а также для пропитки моточных изделий, волокнистых и листовых наполните­лей при изготовлении слоистых пластиков. В этом случаеихназывают пропиточными.

Лаки — это растворы пленкообразующих веществ (лаковой основы) в летучих жидкостях. Лаковой основой могут быть при­родные искусственные или синтетические полимеры, которые после нанесения пленки и испарения растворителя в результате химических реакций окисления, полимеризации или поликонден­сации отверждаются, образуя плотное и прочное покрытие.

Лаки, требующие для (утверждения температуры, большей 343 К (70 °С), называют лаками горячей (печной) сушки, в отли­чие от лаков холодной (воздушной, естественной) сушки. Как и в случае эпоксидных смол, преимущества имеет отверждение в го­рячем состоянии, когда химические процессы происходят более глубоко и полно. Благодаря применению растворителей лаки мо­гут иметь меньшую вязкость, чем эмали и компаунды, и поэтому особенно пригодны в качестве пропиточных материалов.

Если лак используется в виде защитной пленки, требуется, чтобы это покрытие обладало хорошей адгезией, было нехруп­ким, стойким к термоударам и нагреванию во влажной атмосфе­ре. Иногда необходимо, чтобы лаковое покрытие можно было бы пропаять для повышения ремонтоспособности изделия. Большин­ству предъявляемых требований удовлетворяют эпоксидные лаки, но недостаток их в трудностях удаления пленки при ремонте.

Лаковые покрытия являются относительно плотными только при малой толщине (15 ... 75 мкм), слои большей толщины отверждаются с образованием капилляров диаметром 1 ... 10 мкм, через которые удаляются пары растворителя. Поэтому увеличе­ние толщины покрытия сверх 100 мкм неэффективно, а столь тонкие лаковые покрытия надежно служат только в атмосфере без повышенной влажности. Лаки прозрачны и бесцветны и не­способны придать изделию товарный вид.

Наиболее эффективными защитными характеристиками обла­дает фторосодержащий лак ФП-525. Время сушки лака велико (1 ...2ч) и значительно превышает длительность всех других операций герметизации. Большой выигрыш в производительности можно получить при сушке ультрафиолетовым излучением, когда операция завершается за 15 ... 30 с.

Эмали—пигментированные лаки. Пигментом в лакокрасоч­ном производстве называют тонкодисперсные порошки неорга­нических веществ, предназначенные для введения а лак путем растирания пасты. Обычно пигментами служат оксиды металлов, которые окрашивают покрытия и делают их непрозрачными (придают укрывистость), повышают механическую и абразивную прочность, защищают металл от коррозии. Так, эмаль, содержа­щая сурик (Рb3О4), замедляет коррозию черных металлов, окись цинка — алюминия. Пигменты в виде металлических порошков способствуют отражению света и защищают детали от перегрева при солнечном освещении. При наполнении медью, золотом, се­ребром эмали могут обладать хорошей электропроводностью, что позволяет использоватьих в качестве проводников толстопленочных ГИС и экранировки аппаратуры. Содержание пигмен­тов в эмалях составляет 100 ... 150% от массы пленкообразую­щего полимера, поэтому они имеют меньшую, чем лаки, способ­ность проникать в трещины и поры и впитываться в волокнистые материалы. Необходимо также учитывать возможности химиче­ского взаимодействия лака и пигмента, поскольку реакционная поверхность пигмента очень велика—около 1 м2/г.

Эмали, как и лаки, пористы, вследствие чего могут набухать в атмосфере, содержащей пары воды, но особенно органических веществ. Вода может проникать сквозь пленки также под дейст­вием осмотического давления.