Смекни!
smekni.com

Полимеры (стр. 5 из 8)

Полиимид является слабополярным среднечастотным материа­лом, поскольку его tg

=0,003. Полиимид обладает повышенным влагопоглощением, и, вероятно, поэтому диэлектрические потери уменьшаются с повышением температуры: так, при 493 К его tg
=0,0006. Полиимид выпускается в различных видах:

1. Пленка толщиной 8 ... 100 мкм, в том числе фольгированная, предназначенная для гибких печатных плат, шлейфов и под­ложек тонкопленочных ГИС.

2. Лак ПАК, стойкий после высыхания при 470 ... 520 К, огра­ниченно при 573 К, кратковременно при 670 К.

3. Пресс-материал для получения изделий горячим прессо­ванием при 590 К и давлении 100 МПа.

4. Пенопласт (пенополиимид) с плотностью 0,8 ... 2,5 г/см5, применяющийся в качестве тепло- и электроизоляционного мате­риала для температур 90 ... 520 К-

5. Стеклопластик на основе полиимида, стойкий до 670 К, и углепластик, не теряющий механической прочности при 550 К.

6. Изоляционная лента, стойкая при температуре до 500 К.

Недостаток полиимида—повышенное влагопоглощение (1... 3% за 30 сут.), поэтому он нуждается в технологической сушке (особенно при изготовлении изделий из пресс-порошков) и защите.

Первымиреактопластами, полученными около 100 лет назад, были фенолформальдегидные смолы (ФФС). Компонентами этих смол являются фенол и формальдегид, реакция поликонденсации которых происходит при нагреве до 450 .. - 470 К. Известны два типа ФФС— резольные и новолачные, несколько отличающиеся по свойствам. Исходным сырьем для ФФС является каменный уголь, что и объясняет дешевизну и постоялый рост производства, особенно в виде теплоизоляционных пенопластов для строитель­ной промышленности. В электронике ФФС широко применяются для изготовления слоистых пластиков, покрытий и красок (лак на основе ФФС называется бакелитовым), деталей электроизоля­ционной аппаратуры, сепараторов аккумуляторов и т. д.

Удельное сопротивление отвержденной ФФС — 1012 ... ... Ю13 Ом-см, tg

= 0,015 при f=106 Гц, электрическая проч­ность 10 ... 18 МВ/м,
=10 ... —11 (50 Гц) и
=6 (106 Гц). Диапазон рабочих температур 210 ... 470 К. Композиции на осно­ве ФФС и рубленного углеродного волокна (углепрессволокнит) обладают повышенной нагревостойкостью — кратковременно до 800 К. Широко применяются в радиоэлектронике гетинакс и тек­столит—слоистые пластики на основе ФФС с бумажным и тка­невым наполнителями. Недостатки ФФС—хрупкость, высокая вязкость олигомеров и высокая температура отверждения.

Эпоксидные смолы — продукт поликонденсации многоатомных соединений, включающих эпоксигруппу кольца

Благодаря высокой реакционной способности этих колец отверждение эпоксидных олигомеров можно осуществить с помощью многих соединений и таким образом варьировать температурно-временные режимы обработки и свойства пластмассы. Для холод­ного отверждения эпоксидных олигомеров применяют алифатические полиамины в количестве 5 ... 15% от массы олигомера. Жизнеспособность смеси низкая (1 ... З ч), длительность отверж­дения, наоборот, высокая—24 ч, причем степень полимеризации при этом лишь 60 ... 70% и продолжает увеличиваться еще в те­чение 10 ... 30 сут.

Реакция отверждения смол с алифатическими полиаминами экзотермична: в большом объеме может произойти саморазогрев до температуры выше 500 К, что приводит к деструкции полимера и растрескиванию изделия. Поэтому предпочтительнее горячее отверждение, которое осуществляют ароматическими полиаминами (15 ... 50% от массы) с нагревом до 370 ... 450 К в течение 4 ... ...16 ч, ангидридом (50..100%, 39…450 К, 12... 24 ч) или син­тетическими смолами (25 ... 75%, 420 ... 480 К, 10 мин ... 12 ч). При изготовлении изделий важно избегать как недоотверждения, которое проявляется в повышенных диэлектрических потерях и недостаточной жесткости, так и переотверждения, сопровождаю­щегося потерей эластичности. Достоинства эпоксидов состоят в от­сутствии побочных продуктов и очень малой усадке (0,2 ... 0,5%) при отверждении, высокой смачивающей способности и адгезии к различным материалам. Механическая прочность, химическая стойкость, совместимость с другими видами смол и олигомеров (ФФС, кремнийорганическими полимерами), большой выбор отвердителей и других добавок—качества, которые делают эти ма­териалы незаменимыми во многих отраслях техники. Если учесть также их высокие диэлектрические и влагозащитные свойства, ста­новится понятным, почему именно эпоксидные смолы стали основ­ным герметизирующим материалом радиокомпонентов и МЭА и связующим главного слоистого пластика РЭА—стеклотекстолита. Немаловажно, что эпоксидные олигомеры могут быть очищены от примесей, а это сводит к минимуму вредное влияние на поверх­ность полупроводниковых приборов. Наконец, эпоксидные смолы (отвержденные) оптически прозрачны и широко применяются в оптоэлектронных приборах (фотоприемниках, светодиодах, оптопарах),

Свойства эпоксидных смол изменяют в широких пределах, ис­пользуя различные добавки, которые делятся на следующие группы:

· пластификаторы—органические соединения — олигомеры, дей­ствующие как внутренняя смазка и улучшающие эластичность и предотвращающие кристаллизацию, отделяя цепи полимера друг от друга;

· наполнители—в небольших количествах вводятся для улучше­ния прочности и диэлектрических свойств, повышения стабильно­сти размеров, теплостойкости;

· катализаторы—для ускорения отверждения;

· пигменты—для окрашивания.

Компаунды могут быть жидкими и порошкообразными, они имеют узкое назначение и поэтому выпускаются многие десятки их типов, которые можно сгруппировать следующим образом: гер­метики, заливочные, пропиточные, эластичные, тиксотропные.

Недостатки реактопластов: сравнительно высокое значение tg

, неприменимость в качестве диэлектриков СВЧ-техники; неполная воспроизводимость технологических свойств олигомеров так как число эпоксигрупп непостоянно, а это сказывается на тем­пературе и длительности отверждения.

СЛОИСТЫЕ ПЛАСТИКИ

Печатные платы (ПП) являются типовыми несущими конструк­циями современной РЭА и ЭВА. Печатная плата представляет со­бой слоистую структуру, в состав которой входит диэлектрическое основание и печатные проводники (медная фольга). Основания ПП изготавливают из слоистых пластиков—композиций, состоя­щих из волокнистого листового наполнителя — бумаги, ткани, стеклоткани, пропитанных и склеенных между собой различными полимерными связующими. Слоистые пластики отличаются от других материалов тем, что применяемый наполнитель распола­гается параллельными слоями. Такая структура обеспечивает вы­сокие механические характеристики, а использование полимерных связующих—достаточно высокое удельное электрическое сопро­тивление, электрическую прочность и малое значение tg6.

В зависимости от материала связующего и наполнителя раз­личают несколько типов слоистых пластиков (см. таблицу).

Наиболее дешевый материала диэлектрических оснований— гетинакс — обладает высокими диэлектрическими свойствами, находит широкое применение в бытовой радиоаппаратуре. Его не­достатком традиционно считается повышенное влагопоглощение (1,5 ... 2,5%) через слои бумаги или из открытых их торцевых срезов, а также сквозь полимерное связующее. Выпускается гети­накс на основе ацетилированной бумаги, обладающей повышен­ной влагостойкостью и способной заменить стеклотекстолиты. Ге­тинакс для ПП имеет толщину 1 ... 3 мм и не расслаивается при нагреве до 533 К (260 °С) в течение 5 ... 7 с.

Наименование слоистого пластика Наполнитель Связующее
Гетинакс Пропиточная бумага толщиной 0,1 мм Фенолформальдегидная смола (ФФС)
Текстолит Хлопчатобумажная и синтетическая ткани (саржа, бязь, шифон, бельтннг, лавсан) ФФС
Стеклотекстолит Стеклоткани из бесщелочного алюмоборосиликатного стекла Совмещенная, эпоксидная и ФФС- Совмещенная эпоксикремнийорганическая смола

Текстолит обладает более высокой прочностью при сжатии и ударной вязкостью и поэтому используется также в качестве кон­струкционного материала, и его выпускают не только в виде ли­стов, но и плит толщиной до 50 мм.

Стеклотекстолиты благодаря ценным свойствам наполнителя обладают наиболее высокой механической прочностью, тепло­стойкостью и минимальным влагопоглощением. Они имеют луч­шую стабильность размеров, а электрические свойства остаются высокими и во влажной среде. Вледствие необычной твердости поверхности стеклотекстолиты износоустойчивы.

Выпускается несколько десятков марок стеклотекстолитов, предназначенных для разных целей, в том числе повышенной нагревостойкости, тропикостойкости, гальваностойкости, огнестой­кости, с металлической сеткой. Обычные марки фольгированного стеклотекстолита облицованы медной фольгой толщиной 35 ... 50 мкм, для полуаддитивной технологии выпускается тепло­стойкая модификация с фольгой толщиной 5 мкм. Для той же технологии можно применять листовой нефольгированный стеклотекстолит с адгезионным слоем, обладающим неограниченной жизнестойкостью.