Смекни!
smekni.com

Полимеры (стр. 3 из 8)

В неполярных полимерных диэлектриках имеет место преиму­щественно электронная поляризация, в полярных, кроме элек­тронной, могут быть дипольная, миграционная. Под действием электрического поля может происходить смещение участков це­пи молекулы—сегментов; это так называемая дипольно-сегментальная поляризация. Смещение полярных групп атомов, находя­щихся в основной цепи или боковых цепях макромолекулы, проявляется как дипольно-групповая поляризация. В целях получе­ния материала с заданными механическими, электрическими и теплофизическими свойствами широко применяются композиции, состоящие из полимерного связующего, наполнителей и других добавок. В таких полимерах наблюдается и миграционная поля­ризация.

Диэлектрическая проницаемость более или менее резко зави­сит от двух основных внешних факторов: температуры и частоты приложенного напряжения. В неполярных полимерах она лишь слабо уменьшается с ростом температуры вследствие теплового расширения и уменьшения числа частиц в единице объема. В по­лярных полимерах диэлектрическая проницаемость сначала рас­тет, а затем падает, причем максимум обычно приходится на тем­пературу, при которой материал размягчается, т. е. лежит вне пределов рабочих режимов.

Дипольно-сегментальная и дипольная поляризация, обуслов­ленная тепловым движением боковых групп или отдельных групп атомов основной цепи, сопровождаются потерями, причем наибо­лее заметны они на частотах 105... 109 Гц.

Диэлектрические потери вызываются не только полярными группами макромолекулы основного вещества, но и полярными молекулами примесей, например остатками растворителя, абсор­бированной водой и т. д. Небольшие дипольные потери наблю­даются и в неполярных полимерах, так как даже при тщательной очистке мономеров и полимеров от полярных примесей в макро­молекулах имеются карбонильные группы, гидроксильные группы или двойные связи, способные ориентироваться по полю.

Для полимеров, как ни для одних других диэлектриков, ха­рактерны процессы накопления поверхностных зарядов — элек­тризация. Эти заряды возникают в результате трения, контакта с другим телом, электролитических процессов на поверхности. Ме­ханизмы электризации до конца неясны- Одним из них является возникновение при контакте двух тел так называемого двойного слоя, который состоит из слоев положительных и отрицательных зарядов, расположенных друг против друга. Возможно также об­разование на поверхности контактирующих материалов тонкой пленки воды, в которой имеются условия для диссоциации моле­кул примесей. При соприкосновении или трении разрушается пленка воды с двойным слоем и часть зарядов остается на разъ­единенных поверхностях. Электролитический механизм накопле­ния зарядов при контактировании имеет место в полимерных ма­териалах, на поверхности которых могут быть низко молекуляр­ные ионогенные вещества—остатки катализаторов, пыль, влага.

Технологические свойства. Принадлежность полимеров к термопластичному или термореактивному видам во многом опреде­ляет и способы их переработки в изделия. Соотношение их выпу­ска примерно 3:1 в пользу термопластичных материалов, но сле­дует учитывать, что термореактивные полимеры, как правило, используются в смеси с наполнителями, доля которых может до­стигать 80%. Поэтому в готовых изделиях соотношение оказыва­ется обратным: большее их количество — реактопласты. Это объ­ясняется высокой технологичностью фенолформальдегидных, по­лиэфирных, но особенно эпоксидных смол. В производстве по­следних получение полимера удается приостановить на началь­ной стадии, когда молекулярная масса составляет всего 500 ... ... 1000. Такие вещества "по длине цепи средние между мономе­рами и полимерами, обладающие низкой вязкостью, называются олигомерами. Именно их появление произвело в б0-е годы пере­ворот в технологии переработки полимеров в изделия, которая раньше основывалась на применении давления.

Достоинство олигомеров — низкая вязкость — дает возможность формования изделий при минимальном усилии прессования или вообще без него, под действием собственного веса. Более того, даже в смеси с наполнителями олигомеры сохраняют текучесть, что позволяет набрасывать материал на поверхность макета, не применяя давления, получать детали крупных размеров сложной формы. Низкая вязкость олигомеров позволяет также пропиты­вать листы ткани, а их склеивание под прессом и отверждение лежит в основе производства слоистых пластиков—оснований печатных плат. Олигомеры как ни один полимер подходят для пропитки и наклейки компонентов, особенно когда применение давления недопустимо. Для снижения вязкости в олигомер можно вводить добавки, которые способствуют повышению пластич­ности, негорючести, биологической стойкости и т, д.

Применяемая для этих целей смола чаще всего является сме­сью различных веществ, которую не всегда удобно готовить на месте, на предприятии-потребителе, из-за необходимости смеси­тельного и дозирующего оборудования, пожароопасности, ток­сичности и других ограничений. Поэтому широкое распространение получили компаунды—смеси олигомеров с отвердителями и дру­гими добавками, полностью готовые к употреблению и обладаю­щие при обычной температуре достаточной жизнестойкостью. Ком­паунды—жидкие или твердые легкоплавкие материалы—форми­руются в изделие, после чего при повышенной температуре про­водится отверждение и образование пространственной структуры.

Если изделия на основе термореактивных смол получают ме­тодом горячего прессования, то композиция, содержащая кроме смолы еще рубленое стекловолокно или какой-либо порошкооб­разный наполнитель и другие добавки, готовят заранее, и она поступает потребителю в виде гранул или порошка, называемых прессовочным материалом (иногда — пресс-порошком). Несколь­ко отличаются от него меньшей степенью полимеризации префик­сы и препреги, которые благодаря их меньшей вязкости лучше заполняют прессовочные формы.

Технологические свойства как термореактивных, так и термо­пластичных полимеров характеризуются текучестью (способно­стью к вязкому течению), усадкой (уменьшением линейных раз­меров изделий по отношению к размерам формующего инстру­мента), таблетируемостыо (пресс-порошков).

Выше было отмечено, что олигомеры, расплавы и растворы термопластичных полимеров являются вязкотекучими, так назы­ваемыми неньютоновскими жидкостями. Их вязкость зависит не только от природы вещества и температуры, как в ньютоновских жидкостях, но и от других факторов, например толщины слоя. Это—проявление эффекта вязкопластичности, который приводит, например, к тому, что краска, нанесенная на поверхность, стекает не в тонком слое, а в более толстом. Другое проявление необыч­ных свойств так называемых псевдопластичных жидкостей— уменьшение вязкости с увеличением скорости сдвига. Этот эф­фект характерен для растворов и расплавов большинства поли­меров и объясняется тем, что с увеличением скорости течения асимметричные частицы постепенно ориентируются, в результате вязкость убывает до тех пор, пока сохраняется возможность все более полной ориентации. Кривые, характеризующие зависи­мость вязкости г\ от скорости V, называются реологическими (реология—наука о течении в жидкостях под действием внешних сил).

Необычные свойства смесей жидких смол с мелкодисперсными наполнителями, частицы которых имеют асимметричную форму

(тальк, слюдяная мука, аэросил-коллоидный SiO2), проявляются в том, что в спокойном состоянии они обладают высокой вязко­стью, свойственной гелям, а при механическом воздействии (пере­мешивании или встряхивании) переходят в жидкое состояние. Смеси, обладающие этим свойством, называются тиксотропными. Тиксотропные компаунды нашли широкое применение для защи­ты радиодеталей наиболее простым методом — окунания. Вяз­кость компаунда снижают с помощью вибрации (нагрев не тре­буется). При извлечении детали из жидкой смеси с одновремен­ным встряхиванием избыток ее стекает, а оставшаяся часть ее после извлечения вновь гелирует, образуя равномерное по толщи­не покрытие, не содержащее пузырей и вздутий, так как изделие и компаунд не нагреваются. Тиксотропные свойства некоторых полимерных композиций используют также при изготовлении спе­циальных красок и клеев.

ПЛАСТМАССЫ

Пластмассы (пластики)—материалы на основе полимеров, нахо­дящиеся в период формования изделий в вязкотекучем или высокоэластическом состоянии, а при эксплуатации—в стеклообраз­ном или кристаллическом. В пластмассе наряду с полимером могут содержаться наполнители, причем в термопластичные их вво­дят реже и в меньших количествах, чем в термореактивные. По­этому понятия термопластичный полимер, «термопласт», «плас­тик», обычно совпадают.

Основой так называемых «ненаполненных» термопластов яв­ляются полимеры, структура которых почти полностью формиру­ется приих синтезе в условиях специализированного химическо­го производства. Возможности регулирования их свойств на ста­дии изготовления изделий состоят в несущественных изменениях структуры, путем отжига или ориентации, стабилизации и пла­стификации с помощью модифицирующих добавок, изменяющих их свойства. Такими добавками к полимерам являются:

· стабилизаторы, повышающие стойкость к термоокислительным процессам, воздействию излучения, микроорганизмов и т. п.;

· пластификаторы и эластификаторы, повышающие текучесть в вязкотекучем состоянии и эластичность в стеклообразном (ударопрочность);

· легирующие полимеры, изменяющие степень кристалличности, структуру и свойства матрицы;

· пигменты для окрашивания.

Один из основных признаков термопластов: наличие двух твердых состояний — стеклообразного и высокоэластического — и жидкого—вязкотекучего. Оба перехода—плавление и стеклова­ние являются плавными, нерезкими, и механические свойства почти непрерывно и обратимо изменяются при изменении темпера­туры.