В неполярных полимерных диэлектриках имеет место преимущественно электронная поляризация, в полярных, кроме электронной, могут быть дипольная, миграционная. Под действием электрического поля может происходить смещение участков цепи молекулы—сегментов; это так называемая дипольно-сегментальная поляризация. Смещение полярных групп атомов, находящихся в основной цепи или боковых цепях макромолекулы, проявляется как дипольно-групповая поляризация. В целях получения материала с заданными механическими, электрическими и теплофизическими свойствами широко применяются композиции, состоящие из полимерного связующего, наполнителей и других добавок. В таких полимерах наблюдается и миграционная поляризация.
Диэлектрическая проницаемость более или менее резко зависит от двух основных внешних факторов: температуры и частоты приложенного напряжения. В неполярных полимерах она лишь слабо уменьшается с ростом температуры вследствие теплового расширения и уменьшения числа частиц в единице объема. В полярных полимерах диэлектрическая проницаемость сначала растет, а затем падает, причем максимум обычно приходится на температуру, при которой материал размягчается, т. е. лежит вне пределов рабочих режимов.
Дипольно-сегментальная и дипольная поляризация, обусловленная тепловым движением боковых групп или отдельных групп атомов основной цепи, сопровождаются потерями, причем наиболее заметны они на частотах 105... 109 Гц.
Диэлектрические потери вызываются не только полярными группами макромолекулы основного вещества, но и полярными молекулами примесей, например остатками растворителя, абсорбированной водой и т. д. Небольшие дипольные потери наблюдаются и в неполярных полимерах, так как даже при тщательной очистке мономеров и полимеров от полярных примесей в макромолекулах имеются карбонильные группы, гидроксильные группы или двойные связи, способные ориентироваться по полю.
Для полимеров, как ни для одних других диэлектриков, характерны процессы накопления поверхностных зарядов — электризация. Эти заряды возникают в результате трения, контакта с другим телом, электролитических процессов на поверхности. Механизмы электризации до конца неясны- Одним из них является возникновение при контакте двух тел так называемого двойного слоя, который состоит из слоев положительных и отрицательных зарядов, расположенных друг против друга. Возможно также образование на поверхности контактирующих материалов тонкой пленки воды, в которой имеются условия для диссоциации молекул примесей. При соприкосновении или трении разрушается пленка воды с двойным слоем и часть зарядов остается на разъединенных поверхностях. Электролитический механизм накопления зарядов при контактировании имеет место в полимерных материалах, на поверхности которых могут быть низко молекулярные ионогенные вещества—остатки катализаторов, пыль, влага.
Технологические свойства. Принадлежность полимеров к термопластичному или термореактивному видам во многом определяет и способы их переработки в изделия. Соотношение их выпуска примерно 3:1 в пользу термопластичных материалов, но следует учитывать, что термореактивные полимеры, как правило, используются в смеси с наполнителями, доля которых может достигать 80%. Поэтому в готовых изделиях соотношение оказывается обратным: большее их количество — реактопласты. Это объясняется высокой технологичностью фенолформальдегидных, полиэфирных, но особенно эпоксидных смол. В производстве последних получение полимера удается приостановить на начальной стадии, когда молекулярная масса составляет всего 500 ... ... 1000. Такие вещества "по длине цепи средние между мономерами и полимерами, обладающие низкой вязкостью, называются олигомерами. Именно их появление произвело в б0-е годы переворот в технологии переработки полимеров в изделия, которая раньше основывалась на применении давления.
Достоинство олигомеров — низкая вязкость — дает возможность формования изделий при минимальном усилии прессования или вообще без него, под действием собственного веса. Более того, даже в смеси с наполнителями олигомеры сохраняют текучесть, что позволяет набрасывать материал на поверхность макета, не применяя давления, получать детали крупных размеров сложной формы. Низкая вязкость олигомеров позволяет также пропитывать листы ткани, а их склеивание под прессом и отверждение лежит в основе производства слоистых пластиков—оснований печатных плат. Олигомеры как ни один полимер подходят для пропитки и наклейки компонентов, особенно когда применение давления недопустимо. Для снижения вязкости в олигомер можно вводить добавки, которые способствуют повышению пластичности, негорючести, биологической стойкости и т, д.
Применяемая для этих целей смола чаще всего является смесью различных веществ, которую не всегда удобно готовить на месте, на предприятии-потребителе, из-за необходимости смесительного и дозирующего оборудования, пожароопасности, токсичности и других ограничений. Поэтому широкое распространение получили компаунды—смеси олигомеров с отвердителями и другими добавками, полностью готовые к употреблению и обладающие при обычной температуре достаточной жизнестойкостью. Компаунды—жидкие или твердые легкоплавкие материалы—формируются в изделие, после чего при повышенной температуре проводится отверждение и образование пространственной структуры.
Если изделия на основе термореактивных смол получают методом горячего прессования, то композиция, содержащая кроме смолы еще рубленое стекловолокно или какой-либо порошкообразный наполнитель и другие добавки, готовят заранее, и она поступает потребителю в виде гранул или порошка, называемых прессовочным материалом (иногда — пресс-порошком). Несколько отличаются от него меньшей степенью полимеризации префиксы и препреги, которые благодаря их меньшей вязкости лучше заполняют прессовочные формы.
Технологические свойства как термореактивных, так и термопластичных полимеров характеризуются текучестью (способностью к вязкому течению), усадкой (уменьшением линейных размеров изделий по отношению к размерам формующего инструмента), таблетируемостыо (пресс-порошков).
Выше было отмечено, что олигомеры, расплавы и растворы термопластичных полимеров являются вязкотекучими, так называемыми неньютоновскими жидкостями. Их вязкость зависит не только от природы вещества и температуры, как в ньютоновских жидкостях, но и от других факторов, например толщины слоя. Это—проявление эффекта вязкопластичности, который приводит, например, к тому, что краска, нанесенная на поверхность, стекает не в тонком слое, а в более толстом. Другое проявление необычных свойств так называемых псевдопластичных жидкостей— уменьшение вязкости с увеличением скорости сдвига. Этот эффект характерен для растворов и расплавов большинства полимеров и объясняется тем, что с увеличением скорости течения асимметричные частицы постепенно ориентируются, в результате вязкость убывает до тех пор, пока сохраняется возможность все более полной ориентации. Кривые, характеризующие зависимость вязкости г\ от скорости V, называются реологическими (реология—наука о течении в жидкостях под действием внешних сил).
Необычные свойства смесей жидких смол с мелкодисперсными наполнителями, частицы которых имеют асимметричную форму
(тальк, слюдяная мука, аэросил-коллоидный SiO2), проявляются в том, что в спокойном состоянии они обладают высокой вязкостью, свойственной гелям, а при механическом воздействии (перемешивании или встряхивании) переходят в жидкое состояние. Смеси, обладающие этим свойством, называются тиксотропными. Тиксотропные компаунды нашли широкое применение для защиты радиодеталей наиболее простым методом — окунания. Вязкость компаунда снижают с помощью вибрации (нагрев не требуется). При извлечении детали из жидкой смеси с одновременным встряхиванием избыток ее стекает, а оставшаяся часть ее после извлечения вновь гелирует, образуя равномерное по толщине покрытие, не содержащее пузырей и вздутий, так как изделие и компаунд не нагреваются. Тиксотропные свойства некоторых полимерных композиций используют также при изготовлении специальных красок и клеев.
ПЛАСТМАССЫ
Пластмассы (пластики)—материалы на основе полимеров, находящиеся в период формования изделий в вязкотекучем или высокоэластическом состоянии, а при эксплуатации—в стеклообразном или кристаллическом. В пластмассе наряду с полимером могут содержаться наполнители, причем в термопластичные их вводят реже и в меньших количествах, чем в термореактивные. Поэтому понятия термопластичный полимер, «термопласт», «пластик», обычно совпадают.
Основой так называемых «ненаполненных» термопластов являются полимеры, структура которых почти полностью формируется приих синтезе в условиях специализированного химического производства. Возможности регулирования их свойств на стадии изготовления изделий состоят в несущественных изменениях структуры, путем отжига или ориентации, стабилизации и пластификации с помощью модифицирующих добавок, изменяющих их свойства. Такими добавками к полимерам являются:
· стабилизаторы, повышающие стойкость к термоокислительным процессам, воздействию излучения, микроорганизмов и т. п.;
· пластификаторы и эластификаторы, повышающие текучесть в вязкотекучем состоянии и эластичность в стеклообразном (ударопрочность);
· легирующие полимеры, изменяющие степень кристалличности, структуру и свойства матрицы;
· пигменты для окрашивания.
Один из основных признаков термопластов: наличие двух твердых состояний — стеклообразного и высокоэластического — и жидкого—вязкотекучего. Оба перехода—плавление и стеклование являются плавными, нерезкими, и механические свойства почти непрерывно и обратимо изменяются при изменении температуры.