Смекни!
smekni.com

Полимеры (стр. 2 из 8)

Для некоторых полимеров в виде концентрированных раство­ров и расплавов характерно образование под действием поля (гравитационного, электростатического, магнитного) кристалличе­ской структуры с параллельной упорядоченностью макромолекул в пределах небольшого объема—домена. Эти полимеры — так называемые жидкие кристаллы—находят широкое применение при изготовлении светоиндикаторов.

Полимерам наряду с обычной упругой деформацией свойст­вен ее оригинальный вид — высокоэластическая деформация, ко­торая становится преобладающей при повышении температуры. Переходиз высокоэластического состояния в стеклообразное, ха­рактеризующееся лишь упругой деформацией, называется стекло­ванием. Ниже температуры стеклования Тст состояние полимера твердое, стекловидное, высокоупругое, выше—эластическое. Если температура стеклования выше температуры эксплуатации, то по­лимер используется в стеклообразном состоянии, если Тст<Тэкс— в высокоэластическом. Температура стеклования разных полиме­ров находится в пределах 130...300 К. Для детальной характе­ристики полимеров в специальных условиях в справочной лите­ратуре приводятся также значения температур перехода в хруп­кое состояние и холодостойкость.

Рис.3. Вращение групп молекулы полимера – смена конформаций в молекуле этанаС2Н6. Рис.4. Характер изменения удлинения во времени при постоянной нагрузке: а – модель Максвелла, б - модель Войта-Кельвина.

Для прочных (конструкционных) полимеров кривая растяже­ния подобна аналогичной кривой для металлов (рис.4). По зна­чению модуля упругости Е конструкционные полимеры делятся на четыре группы: жесткие E>104 МПа, полужесткие E=(5...10). 103 МПа, мягкие E=(1...5)*103 МПа. Наиболее эла­стичные полимеры—эластомеры (каучуки) имеют модуль упру­гости E=10МПа. Как видно, даже высокомодульные полимеры уступают по жесткости металлам в десятки и сотни раз- Этот не­достаток удается в значительной мере преодолеть введением в полимер волокнистых и листовых наполнителей.

Особенность полимеров состоит также в том, что их прочност­ные свойства зависят от времени, т. е. предельная деформация устанавливается не сразу после приложения нагрузки. Такая за­медленная реакция их на механические напряжения объясняется инерционностью процесса смены конформаций, что можно пред­ставить с помощью модели (рис.4). Для полимеров, находя­щихся в высокоэластическом состоянии, закон Гука в простей­шей форме неприменим, т. е. напряжение непропорционально де­формации. Поэтому обычные методы испытаний механических свойств применительно к полимерам могут давать неоднозначные результаты. По той же причине инженерных расчетных способов конструирования деталей из полимеров пока еще не существует и преобладает эмпирический подход.

Теплофизические свойства. Коэффициент теплопроводности по­лимеров значительно ниже, чем других твердых тел,—около 0,2 ... 0,3 В/(м*К), поэтому они являются теплоизоляторами. Вследствие относительной подвижности связей и смены конфор­маций полимеры имеют высокий ТКЛР (10-4 ... 10-5 К-1). Мож­но было бы поэтому полагать, что они плохо совместимы с ма­териалами, имеющими меньший ТКЛР,—металлами и полупровод­никами. Однако высокая эластичность полимеров и сравнительно

небольшой интервал рабочих температур позволяет широко при­менять их в виде пленок, нанесенных на поверхность любых ма­териалов.

Диапазон температур, при которых можно эксплуатировать полимеры без ухудшения их механических свойств, ограничен. Нагревостойкость большинства полимеров, к сожалению, очень низка — лишь 320...400 К и ограничивается началом размягче­ния (деформационная стойкость). Помимо потери прочности по­вышение температуры может вызвать и химические изменения в составе полимера, которые проявляются как потеря массы. Спо­собность полимеров сохранять свой состав при нагревании коли­чественно характеризуется относительной убылью массы при на­греве до рабочей температуры. Допустимым значением убыли массы считается 0,1 ... 1%. Полимеры, стойкие при 500 К, счи­таются нагревостойкими, а при 600...700 К — высоконагревостойкими. Их разработка, расширение выпуска и применения приносят большой народнохозяйственный эффект.

Химические свойства. Химическая стойкость полимеров опреде­ляется разными способами, но чаще всего по изменению массы при выдержке образца в соответствующей среде или реагенте. Этот критерий, однако, не является универсальным и не отража­ет природу химических изменений (деструкции). Даже в стан­дартах (ГОСТ 12020—66) предусмотрены лишь качественные ее оценки по балльной системе. Так, полимеры, изменяющие за 42 суток массу на 3 ... 5%, считаются устойчивыми, на 5 ... 8%— относительно устойчивыми, более 8 ... 10%—нестойкими- Конеч­но, эти пределы зависят от вида изделия и его назначения.

Для полимеров характерна высокая стойкость по отношению к неорганическим реактивам и меньшая — к органическим. В принципе все полимеры неустойчивы в средах, обладающих резко выраженными окислительными свойствами, но среди них есть и такие, химическая стойкость которых выше, чем золота и платины. Поэтому полимеры широко используются в качестве кон­тейнеров для особо чистых реактивов и воды, защиты и гермети­зации радиокомпонентов, и особенно полупроводниковых прибо­ров и ИС.

Особенность полимеров состоит еще и в том, что они по своей природе не являются вакуумплотными. Молекулы газообразных и жидких веществ, особенно воды, могут проникать в микропусто­ты, образующиеся при движении отдельных сегментов полимера. даже если его структура бездефектна.

Для качественной оценки сорбционно-диффузионных процес­сов в полимерах используются три параметра: коэффициент диф­фузииD, м2/с; коэффициент растворимости 5, кг/(м3*Па); коэф­фициент проницаемости р, кг/(м*Па*с), причем p=DS. Так, для воды в полиэтилене D=0,8-10-12 м2/c, S=10-3 кг(м3 Па) и р=8*10-16 кг/(м*Па*с).

Полимеры выполняют роль защиты металлических поверхностей от коррозии в случаях, когда:

1) толщина слоя велика

2) полимер оказывает пассивирующее действие на активные (дефектные) центры металла, тем самым подавляя коррозионное действие влаги, проникающей к поверх­ности металла.

Как видно, герметизирующие возможности полимеров ограни­чены, а пассивирующее их действие неуниверсально. Поэтому по­лимерная герметизация применяется в неответственных издели­ях, эксплуатирующихся в благоприятных условиях.

Для большинства полимеров характерно старение — необра­тимое изменение структуры и свойств, приводящее к снижению их прочности. Совокупность химических процессов, приводящих под действием агрессивных сред (кислород, озон, растворы кис­лот и щелочей) к изменению строения и молекулярной массы, на­зывается химической деструкцией. Наиболее распространенный ее вид — термоокислительная деструкция—происходит под дей­ствием окислителей при повышенной температуре. При деструк­ции не все свойства деградируют в равной мере: например, при окислении кремнийорганических полимеров их диэлектрические параметры ухудшаются несущественно, так как Si окисляется до оксида, который является хорошим диэлектриком.

Электрические свойства. Как правило, полимеры являются ди­электриками, по многим параметрам лучшими в со­временной технике. Величина удельного объемного сопротивления рv зависит не только от строения, ной от содержания ионизирован­ных примесей — анионов Сl-, F-, I-, катионов Н+, Na+ и других, которые чаще всего вводятся в смолу вместе с отвердителями, модификаторами и т.д. Их концентрация может быть высокой, если реакции отверждения не были доведены до конца. Подвиж­ность этих ионов резко увеличивается с повышением температу­ры, что приводит к падению удельного сопротивления. Наличие даже весьма малых количеств влаги также способно значительно уменьшить удельное объемное сопротивление полимеров. Это происходит потому, что растворенные в воде примеси диссоциируют на ионы, кроме того, присутствие воды способствует диссо­циации молекул самого полимера или примесей, имеющихся в нем. При повышенной влажности значительно уменьшается удельное поверхностное сопротивление некоторых полимеров, что обусловлено адсорбцией влаги.

Диапазон значений рv для большинства полимерных диэлек­триков (в условиях нормальной температуры и влажности) со­ставляет 1012 ... 1015 Ом*см. Температурная зависимость удель­ного сопротивления в большой степени определяется физическим состоянием полимерного диэлектрика. Для полимеров в стекло­образном и кристаллическом состояниях зависимость ln

от 1/Т прямолинейна, в высокоэластическом— криволинейна. Вблизи температуры стеклования кривые ln
=f(1/T) претерпевают из­лом. Более резкое изменение удельной проводимости с темпера­турой в области высокоэластического состояния объясняют воз­растанием подвижности макромолекул и возникновением группо­вого механизма движения ионов.

Строение макромолекул, характер их теплового движения, на­личие примесей или специальных добавок влияют на вид, концен­трацию и подвижность носителей. Так, удельное сопротивление полиэтилена повышается в 10 ... 1000 раз после очисткиот низ­комолекулярных примесей. Сорбция 0.01 ... 0,1% воды полисти­ролом приводит к снижению удельного сопротивления в 100 ... ... 1000 раз.