Смекни!
smekni.com

Переработка нефти (стр. 4 из 11)

Жирный газ, получаемый на установках каталитического крекинга характеризуется значительным содержанием углеводородов изостроения, особенно изобутана. Это повышает ценность газа как сырья для дальней шей переработки.

Жирный газ установки каталитического крекинга и бензин для удаления из него растворенных легких газов поступают на абсорбционно-газофракционирующую установку[1]. Работа этой установки тесно связана с работой установки каталитического кре­кинга. Связь заключается не только в том, что на абсорбционно-газофракционирующую установку поступают легкие продукты с установки каталитического крекинга, но и в технологической взаимозависимости обеих установок. Так, с увеличением количества газа, образующегося при крекинге, необходимо вводить в работу дополнительный компрессор на абсорбционно-газофракционирующей установке во избежание повышения давления на уста­новке каталитического крекинга. С увеличением температуры конца кипения нестабильного бензина приходится изменять режим бутановой колонны, чтобы не снизить глубину отбора бутан-бути­леновой фракции.

Сухой газ, получаемый после выделения бутан-бутиленовой и пропан-пропиленовой фикций, большей частью используется как энергетическое топливо.

Нестабильный бензин. При каталитическом крекинге можно вырабатывать высокооктановый автомобильный бензин или сырье для получения базового авиационного бензина путем каталитиче­ской очистки.

При производстве базового авиационного бензина исходным сырьем являются керосиновые и легкие соляровые дистилляты первичной перегонки нефти или их смеси, выкипающие в пределах 240—360 °С. Сначала получают бензин с концом кипения 220-245 °С (так называемый мотобензин). После стабилизации этот бензин поступает на дальнейшую переработку—каталитическую очистку (вторая ступень каталитического крекинга), на которой получают базовый ави.ационный бензин. Последний, в результате каталитической очистки, содержит, по сравнению с автомобиль­ным бензином, значительно меньше олефинов и больше аромати­ческих углеводородов, что соответственно повышает стабильность и октановое число авиационного бензина.

Базовые авиационные бензины в зависимости от свойств пере­рабатываемого сырья и условий процесса имеют октановые числа по моторному методу от 82 до 85, а с добавкой этиловой жидкости(3—4мл на 1 кг бензина)—от 92 до 96.

При производстве автомобильного бензина в качестве исход­ного сырья, как правило, используются дистилляты, полученные при вакуумной перегонке нефти и выкипающие при 300—550°С или в несколько более узких пределах. Получаемые на установках каталитического крекинга автомобильные бензины имеют октано­вые числа по моторному методу 78—82 (без добавки этиловой жидкости), а по исследовательскому методу 88—94 без этиловой жидкости и 95—99 с добавлением 0,8мл ТЭС на 1л.

Нестабильный бензин каталитического крекинга подвергают физической стабилизации с целью удаления растворенных в нем легких углеводородов, имеющих высокое давление насыщенных паров.

Из стабильных бензинов каталитического крекинга приготов­ляют авиационные бензины или используют их как высокооктановые компонента для приготовления автомобильных бензинов разных марок. Компоненты автомобильного бензина ка­талитического крекинга в нормальных условиях хранения доста­точно химически стабильны.

Автомобильные бензины представляют собой, как правило, смеси многих компонентов. Среди них есть фракции, полученные в разных процессах, в том числе и высокооктановые продукты каталитического крекинга. В зависимости от марки бензина состав компонентов может колебаться в широких пределах. Так же, как и при приготовлении авиационных бензинов, в пределах, разре­шенных стандартом, к автомобильным бензинам (кроме бензина А-72) допускается добавление этиловой жидкости.

Для обеспечения нормальной работы более экономичных дви­гателей с высокими степенями сжатия все больше вырабатывается высококачественных автомобильных бензинов АИ-93 и АИ-98. Эти бензины имеют октановые числа по исследовательскому методу со­ответственно 93 и 98 пунктов; максимально допустимая концентра­ция тетраэтилсвинца в бензинах не должна превышать 0,82 г на 1 кг бензина, температура конца кипения их не должна быть выше 195°С. Бензины АИ-93 и АИ-98 обладают хорошей стабильностью, что позволяет хранить их длительное время.

Легкий газойль. Легкий каталитический газойль (дистиллят с н. к. 175—200 °С и к. к. 320—350 °С) по сравнению с товарными дизельными фракциями имеет более низкое цетановое число и повышенное содержание серы. Цетановое число легкого каталити­ческого газойля, полученного из легких соляровых дистиллятов па­рафинового оснований, составляет 45—56, из нафтеноароматических дистиллятов—25—35. При крекинге более тяжелого сырья цетановое число легкого газойля несколько выше, что объясняется меньшей глубиной превращения. Цетановые числа с повышением температуры крекинга снижаются. Легкие каталитические газойли содержат непредельные углеводороды и значительные количества .(28—55%) ароматических углеводородов. Температура застыва­ния этих газойлей ниже, чем температура застывания сырья, из которого они вырабатываются.

На качество легкого газойля влияет не только состав сырья, но и катализатор и технологический режим. С повышением температуры выход легкого каталитического газойля и его цетановое число уменьшаются, а содержание ароматических углеводородов в нем повышается. Понижение объемной скорости, сопровождаю­щееся углублением крекинга сырья, приводит к тем же результа­там. При крекинге с рециркуляцией выход легкого газойля сни­жается (в большинстве случаев он подается на рециркуляцию), уменьшает его цетановое число и возрастает содержание в нем ароматических углеводородов.

Легкие каталитические газойли используются в качестве ком­понентов дизельного топлива в том случае, если смешиваемые компоненты дизельного топлива, получаемые при первичной пере­гонке нефти, имеют запас (превышение) по цетановому числу и содержат серы в количестве ниже нормы. В других случаях легкий газойль используют лишь в качестве сырья (или его компонента) для получения сажи (взамен зеленого масла) или в качестве разбавителя при получении мазутов. Возможно и комбинирован­ное использование легкого газойля, В этом случае его подвер­гают экстракции одним из растворителей, применяемых в произ­водстве масел селективным методом. Легкий газойль, частично освобожденный от ароматических углеводородов, после отгонки растворителя (рафинат) имеет более высокое цетановое число, чем до экстракции, и может быть использован в качестве дизель­ного топлива; нижний слой, содержащий большую часть арома­тических углеводородов, также после отгонки растворителя (экс­тракт) может быть использован в качестве сырья для получения высококачественной сажи.

Тяжелый газойль. Тяжелый газойль является остаточным про­дуктом каталитического крекинга. Качество его зависит от тех­нологических факторов и характеристик сырья, а также от качества легкого газойля. Тяжелый газойль может быть загрязнен катализаторной пылью; содержание серы в нем обычно выше чем в сырье каталитического крекинга. Тяжелый газойль используют либо при приготовлении мазутов, либо в качестве сырья для тер­мического крекинга и коксования. В последнее время его исполь­зует как сырье для производства сажи.

5. Катализаторы крекинга.

Реакции каталитического крекинга протекают на поверхности катализатора. Направление реакций зависит от свойств катали­затора, сырья и условий крекинга. В результате крекинга на по­верхности катализатора отлагается кокс, поэтому важной особен­ностью каталитического крекинга является необходимость частой регенерации катализатора (выжигание кокса).

Для каталитического крекинга применяются алюмосиликатные катализаторы. Это природные или искусственно полученные твер­дые высокопористые вещества с сильно развитой внутренней по­верхностью.

В заводской практике применяют алюмосиликатные активиро­ванные природные глины и синтетические алюмосиликатные ката­лизаторы в виде порошков, микросферических частиц диаметром 0,04—0,06 мм или таблеток и шариков размером 3—6мм. В массе катализатор представляет собой сыпучий материал, который можно легко транспортировать Потоком воздуха или углеводородных паров.

На установках крекинга применяются следующие алюмосили­катные катализаторы.

1. Синтетические пылевидные катализаторы с частицами раз­меров 1—150 мк.

2. Природные микросферические или пылевидные катализа­торы, приготовляемые из природных глин (бентониты, бокситы и некоторые другие) кислотной и термической обработкой или только термической обработкой. Размеры частиц те же, что указаны в п. 1. По сравнению с синтетическими, природные катализаторы ме­нее термостойки и имеют пониженную активность.

3. Микросферический формованный синтетический катализатор с частицами размером 10-150 мк. По сравнению с пылевидным, микросферический катализатор при циркуляции меньше измель­чается и в меньшей степени вызывает абразивный износ аппара­туры и катализаторопроводов. Удельный расход его ниже, чем расход пылевидного катализатора.

4. Синтетический катализатор в виде стекловидных шариков диаметром 3—6 мм.

5. Природные и синтетические катализаторы с частицами раз­мером 3—4мм искаженной цилиндрической. формы. Их часто на­зывают таблетированными, они характеризуются меньшей прочностью, чем шариковые, и используются преимущественно на установках с неподвижным катализатором.

Указанные выше 5 типов катализаторов являются аморф­ными.

6. Синтетические кристаллические цеолитсодержащие катали­заторы, содержащие окись хрома (что способствует лучшей реге­нерации), а также окиси, редкоземельных металлов (улучшающие селективность катализатора и увеличивающие выход бензина с некоторым улучшением его свойств). Они вырабатываются гранулированными—для установок с нисходящим потоком ка­тализатора — и микросферическими — для установок в кипящем слое.