Смекни!
smekni.com

Основы химии (стр. 22 из 32)

Если система находится при Т–const, то она является изотермической, при Р–const – система изобарная, при V–const – система изохорная. Если две величины постоянные (Т–const и Р–const) – система является изобарно-изотермической.

Соответственно и процессы:

¾ Изитермические – процессы, протекающие при постоянной температуре.

¾ Изобарные – процессы, происходящие при постоянном давлении.

¾ Изохорные – при постоянном объеме.

8.2. Энергетические эффекты химических процессов.

В химических процессах чаще всего происходит выделение или поглощение теплоты.

· Количество теплоты, выделенной или поглощенной системой в результате химического превращения, называют тепловым эффектом реакции.


Химические уравнения, в которых указано количество выделенной или поглощенной теплоты, называют термохимическими уравнениями.

В термохимических уравнениях указываются фазовые (агрегатные) состояния как исходных, так и продуктов реакции: г – газообразное, т – твердое, к – кристаллическое состояние.

J2(к)+H2S(г)=2HJ(г)+S(к).

В таких уравнениях допускаются так же дробные коэффициенты.

½N2(г) + ½O2(г)=NO(г).

SO2(г) + ½O2(г)= SO3(г).

· Если реакция протекает с выделением теплоты, то такую реакцию называют экзотермической, а с поглощением теплоты эндотермической.

Полная энергия системы состоит из трех видов энергии: кинетической энергии движения системы как целого объекта, потенциальной энергии обусловленной поглощением системы в каком-либо поле (гравитационном, магнитном, электрическом) и внутренней энергии системы.

Химические процессы, как правило, протекают в относительно стандартных условиях, т.е. при отсутствии электрических, магнитных и гравитационных воздействий. В этом случае изменение кинетической и потенциальной энергии системы практически не происходит. Все энергетические эффекты обусловлены только изменением внутренней энергии системы.


Внутренняя энергия системы (U) включает в себя кинетическую и потенциальную энергию составляющих систему частиц. Это энергия взаимного расположения и движения молекул вещества, атомов входящих в состав молекулы, электронов, ядер и других частиц.

Измерить абсолютное значение внутренней энергии системы невозможно, но можно измерять изменение внутренней энергии ΔU в конкретном процессе, в частности в ходе химической реакции.

При переходе системы из начального состояния (1), от исходных веществ, в конечное состояние (2), к продуктам реакции, изменение внутренней энергии будет равно: ΔU =U2–U1

8.3. Первый закон термодинамики.

В основе химической термодинамики лежат два закона, называемых первым и вторым законами термодинамики.

Первый закон термодинамики вытекает из обобщения многолетнего опыта человечества. Выдвинутые Ломоносовым идеи о законе сохранении материи и движения получили развитие в работах Майера, Гельмгольца и Джоуля, в которых экспериментально было установлено, что теплота и работа являются эквивалентными энергетическими эффектами и связаны с изменением внутренней энергии системы.

Первый закон термодинамики связан с законом сохранения энергии и устанавливает эквивалентность различных ее форм.


Первый закон термодинамики имеет следующую формулировку: Энергия, сообщенная системе, расходуется на увеличение (изменение) внутренней энергии и на работу, совершаемую системой против внешних сил

Математически первый закон термодинамики можно записать так:

Q=ΔU +A

Здесь: Q – энергия (теплота), сообщенная системе; ΔU – изменение внутренней энергии системы; А – работа против внешних сил.

Значение внутренней энергии системы зависит от параметров состояния системы (прежде всего от температуры и давления), а ΔU – от значения этих параметров в начальном и конечном состояниях системы. Следовательно, внутренняя энергия является термодинамической функцией состояния системы.

ΔU = U2–U1

U1 – внутренняя энергия системы в начальном состоянии. U2 – внутренняя энергия системы в конечном состоянии.

В обычных условиях система находится под атмосферным давлением, которое, не меняется резко. Его можно считать в данный момент постоянным. В этом случае работа будет совершаться за счет изменения объема, т.е. расширения или сжатия системы в результате химической реакции.

А=V1V2pdv или А= pΔV=(V2–V1)

Значения ΔU и А подставим в математическое выражения первого закона термодинамики.

Q=ΔU + A=U2 – U1 + p (V2–V1)=U2 – U1 + pV2 – pV1=(U2 + pV2) – (U1 + pV1)

Выражение (U + pV) обозначим через Н.

U+ pV=Н

Следовательно

Q=H2 – H1=ΔH

Величину Н называют энтальпией системы, а ΔH – изменением энтальпии системы в результате химической реакции. Мы пришли к выводу, что энергия (теплота), сообщенная системе, расходуется на изменение энтальпии системы. При Р const

Qp=ΔH

Энтальпия Н, как и внутренняя энергия U является термодинамческой функцией, функцией состояния.

Рассмотрим, в чем заключается физический смысл энтальпии. В выражении

Н=U=pV

U – внутренняя энергия, а произведение pV – внешняя энергия. Следовательно энтропия – сумма внутренней и внешней энергии. Физический смысл энтальпии тот же, что и внутренней энергии, т.е. смысл энергии. Внутренняя энергия при постоянном объеме, энтальпия при постоянном давлении.

ПриР=const

Qp=ΔH

При V=const

Q=ΔU

Это значит, что при постоянном давлении теплота процесса (тепловой эффект) равна изменению энтальпии, а при постоянном объеме теплота процесса равна изменению внутренней энергии.

Энтальпия – термодинамическая функция, определяющая энергию, необходимую для приведения данной системы в данное состояние, при этом учитывается изменение внутренней энергии и совершаемую работу

Первому закону термодинамики можно дать и такую формулировку: Изменение внутренней энергии закрытой системы определяется количеством переданной теплоты и совершенной работы, т.е.

ΔU=Q–A

Выражение ΔU означает, что значение U, как функции состояния системы, не зависит от способа (пути) перехода системы из исходного состояния в конечное, а определяется только самим состоянием системы в исходном и конечном пунктах: ΔU=U2–U1. В тоже время теплота (Q) и работа (А) функциями состояния не являются, они возникают только в процессе перехода системы из первого состояния во второе и, естественно, зависят как от пути процесса, так и от условий его проведения. Разность (Q–A) дает ΔU не зависимо от способа перехода системы и определяет только приращение внутренней энергии системы, но не ее абсолютное значение.

Первый закон термодинамики объединяет три энергетические величины: внутреннюю энергию, теплоту и работу. Все величины Q, U, H и А имеют размерность энергии. В международной системе единиц (СИ) они выражаются в одних и тех же единицах – Джоулях (или Килоджоулях).

В связи с этим:

· Теплота – это результат изменения внутренней энергии, это передача хаотического поступательного, колебательного и вращательного движения от структурных единиц системы к частицам внешней среды путем теплопроводности, излучения или конвекции (или наоборот).

· Работа тоже является результатом изменения внутренней энергии системы. Это передача упорядоченного поступательного движения от организованного потока частиц системы к частицам внешней среды. С созданием в ней такого же организованного поступательного движения потока частиц. В частности работа расширения или сжатия системы за счет изменения объема в результате химического процесса.

Следовательно, работа является одной из форм передачи энергии от одной системы к другой – от системы совершающей работу к системе над которой работа совершается. При этом, энергия системы, которая совершает работу, будет убывать.

В экзотермических процессах система теряет тепловую энергию, поэтому энтальпия этого процесса со знаком минус: ΔHэкзот.реакц.<0. Например,

Н2(г) + ½О2(г)2О(г); ΔH0= -57 кДж/моль.

В эндотермических процессах, наоборот, система приобретает энергию, следовательно, энтальпия идет со знаком плюс. (энергия вливается в систему).

SO3(г)= SO2(г) + ½O2(г); ΔH0= +23,49 кДж/моль.