быть реализованы различными косвенными путями. При введении в каучук биологически активных систем на основе гидрофобизированного белка, являющегося продуктом переработки вторичного сырья мясомолочной, пищевой и фармацевтической промышленности, можно существенно улучшить свойства смесей на основе модифицированного таким образом каучука, кроме того, данный способ является экологически и экономически перспективным способом модификации.
Таким образом, для модификации СПИ биополимерами целесообразно использовать микробные белки и липиды, являющиеся источником комплекса липидов и белков.
Целью работы было изучение влияния микробных липидов и белковых фрагментов на свойства СПИ и полученных эластомерных композиций на его основе. В качестве объектов исследования были выбраны биологически активные соединения:
- Липидный остаток биомассы Rhodobactercapsulatus.
Из биомассы Rhodobacter сapsulatus (представитель аноксигенных фотосинтезирующих микроорганизмов) направленно получают бактериопурпурин для медицинских целей. Кроме того, биомасса Rhodobactercapsulatus может быть источником других ценных биологически активных соединений:
каротиноидных углеводородов - 3.9%, токоферолов - 5%, кислородосодержащих каротиноидов и высших жирных кислот - 65.5% , ВЖК - 5%, ВЖК и фитолов - 19.7%. Выделение фракции, кислородосодержащих каротиноидов показало, что преимущественно преобладают в липидном остатке сфероидены. Общий выход, которого от липидного остатка составил 14%. Процентный состав ВЖК от липидного остатка биомассы Rhodobactercapsulatus:
миристиновой – 0,98%, пальмитиновой - 3,5%, пальмитолеиновой – 3,9%, стеариновой – 2,2%, олеиновой – 90,1%,
- Соевый белок, имеющий близкий состав с белком НК и соевая мука:
Соевый белковый изолят PROFAM 9704.
Профам 974 – изолированный соевый белок – растворимый диспергируемый продукт, разработанный для использования в пищевых системах, где требуется высокофункциональный белок.
- Мука соевая дезодорированная полуобезжиренная
Мука соевая дезодорированная полуобезжиренная (ГОСТ 3898-56) производится из генетически немодифицированнойсои, с целью повышения биологической и питательной ценности любого продукта, обогащая его белками, витаминами A, B1, B2, РР, жиром, лецитином.
Исследования влияния биологически активных соединений на когезионные свойства СКИ-3 и смесей на его основе, показало, что при введении липидного остатка биомассыRhodobactercapsulatus в каучук условное напряжение при 100%-ом растяжении уменьшается с увеличением его содержания (табл. 5.1).Также наблюдается уменьшение условной прочности при растяжении с возрастанием содержания липидного остатка в каучуке СКИ-3. При этом, относительное удлинение имеет экстремальный характер поведения с изменением содержания липидного остатка: максимальное значение соответствует образцам с содержанием 0,075 мас. ч. Также заметно, что относительное удлинение у образцов с введённым липидным остатком выше, чем у исходного СКИ-3. Таким образом, введение данного липидного остатка не способствует увеличению когезионной прочности резиновой смеси на основе СКИ-3 до уровня НК, что может указывать на пластифциирующий эффект липидов (табл. 5.1.).
Введение липидного остатка биомассы Rhodobactercapsulatus существенно повлияло на вулканизационные характеристики резиновых смесей. Снижается индукционный период вулканизации с увеличением содержания липидного остатка в каучуке, также снижается время достижения оптимума вулканизации по сравнению с СКИ-3. Липиды увеличивают скорость вулканизации, поэтому для смесей на основе СКИ-3, содержащего липидный остаток необходимо меньшее количество ускорителей вулканизации, чем для немодифицированного каучука по-видимому, это связано с лучшим диспергированием вулканизационной системы в каучуке и более эффективной вулканизацией, так как липидный остаток Rhodobactercapsulatus содержит преимущественно высокомолекулярные каротиноидные углеводороды и высшие жирные кислоты. Было установлено, что у всех образцов резиновых смесей на основе СКИ-3, содержащих липидный остаток наблюдался резкий скачок упруго-прочностных характеристик практически при одном и том же значении деформации (рис. 5.5). При этом более высокой прочностью обладают резины на основе СКИ-3, содержащего 0,075 мас. ч. липидного остатка. Дальнейшее увеличение их содержания приводит к некоторому ухудшению свойств, что может быть связано с усилением пластифицирующего эффекта.
Сравнивая вулканизационные характеристики смесей на основе СКИ-3 модифицированные соевым белком с вулканизационными характеристиками СКИ-3 можно отметить что индукционный период вулканизации снижается с увеличением содержания масс.ч. соевого белка. Однако введение дозировки свыше 10 масс.ч. нецелесообразно, т.к индукционный период остается на прежнем уровне. Существенно снижается время достижения оптимума вулканизации при введении в каучук 1 массовой части соевого белка, но при введении 3 массовых частей время достижения оптимума вулканизации резко возрастает и постепенно начинает снижаться с увеличением содержания соевого белка. Минимальный крутящий момент уменьшается с введением 1 и 3 мас. ч. соевого белка, а с увеличением содержания начинает возрастать. Максимальный крутящий момент несущественно увеличивается с увеличением содержания соевого белка в резиновой смеси, также растет степень вулканизации. Белки увеличивают скорость вулканизации, из таблицы 5.5 видно, что при введении 1 мас. ч. скорость вулканизации увеличивается, но при дальнейшем увеличение соевого белка в резиновой смеси снижает скорость вулканизации, так как белки являются вторичными ускорителями [44]. Также белки применяются и в смеси с неорганическими наполнителями. Неорганические наполнители, смешанные с соевым белком, могут давать вулканизованные и невулканизованные резины с высоким модулем и твердостью. Примером может служить смесь 2000 г мела и 600 г 10 % суспензии соевой муки, применяемая для наполнения бутадиен-стирольного каучука [44].
В синтетические белки соевый белок можно вводить в количестве от 1 до 10 мас.ч. Но чем больше содержание соевого белка в смеси СКИ-3, тем хуже механические свойства полимера. Так из рисунка 5.5 видно, что условное напряжение при 500%-ом удлинении растет, однако по достижении 10 мас. ч. начинает падать.
Исследования соевой муки, в качестве наполнителя резиновых смесей на основе натурального каучука показали перспективность ее использования в качестве полуактивного наполнителя [45]. Соевая мука существенно улучшает механические свойства резиновых смесей. При ее введении в смесь на основе СКИ-3, наблюдался рост условного напряжения при 500 % - ом удлинении при увеличении содержания соевой муки в резиновой меси до 10 мас. ч., но не достигает уровня НК, после чего наблюдается незначительное падение (рис. 5.7).
Рассматривая влияние соевой мукина когезионные свойства резиновый смесей на основе СКИ-3, было установлено, что условное напряжение при 100%-ом удлинении растет с увеличением содержания соевой муки в смеси; (табл. 5.6).Условная прочность при растяжении начинает расти при увеличении содержания соевой муки в смеси свыше 5 мас. ч. Однако относительное удлинение начинает снижаться с увеличение содержания соевой муки в резиновой смеси на основе СКИ-3.
Анализируя влияние соевой муки на вулканизационные характеристики смесей на основе СКИ-3, можно отметить что индукционный период вулканизации снижается с увеличением содержания масс.ч. соевой муки. Время достижения оптимума вулканизации имеет неоднозначный характер как видно из таблицы 5.7. С увеличением содержания соевой муки в каучуке минимальный крутящий момент снижается. Максимальный крутящий момент увеличивается с введение 1 мас.ч., однако при введении 3 и 6 мас.ч снижается, и при дальнейшем увеличении содержания соевой муки в резиновой смеси начинает
снова возрастать. Степень вулканизации также растет с увеличением содержания соевой муки в резиновой смеси на основе СКИ-3.С введением в резиновую смесь 1 мас. ч. соевой муки скорость вулканизации существенно возрастает, а дальнейшее введение соевой муки снижает данную характеристику.
Таким образом, изучение влияния липидов и белковых фрагментов на свойства СПИ и полученных эластомерных композиций на его основе, показало, что липиды и белковые фрагменты, вводимые в резиновую смесь на основе СКИ-3, позволяют получить каучук с улучшенным комплексом свойств, приближающихся к уровню НК.
7. Охрана труда
Введение
Под охраной труда понимают систему законодательных актов и соответствующих им социально-экономических, гигиенических и организационных мероприятий, обеспечивающих безопасность, сохранение здоровья и работоспособность человека в процессе труда.
При выполнении работы в лаборатории, необходимо уделять большое внимание соблюдению норм и правил техники безопасности.
Мероприятия по охране труда ставят целью:
• Предупреждение производственного травматизма;
• Предупреждение профессиональных заболеваний;
• Повышение производительности труда.
Работа выполнялась на кафедре Химии и физики полимеров и процессов их переработки (ХФП и ПП) МИТХТ им.М.В.Ломоносова.
В ходе работы были использованы пожароопасные и токсичные вещества, а также электрооборудование. Для обеспечения безопасности условий труда необходимо знание пожароопасных и токсичных свойств веществ и материалов, мер защиты и средств первой помощи, правил работы на электрооборудовании.
В данной работе не использовались радиоактивные вещества и другие источники ионизирующих излучений.
7.1. Пожароопасные свойства горючих веществ и материалов и меры безопасности при работе с ними
Липиды были предварительно растворены в 5 мл петролельного эфира и получены уже в жидком виде. Пожароопасные свойства веществ представлены в таблице 7.1 [46]