Смекни!
smekni.com

Качественный анализ анионов (стр. 1 из 3)

План

Введение. 2

Методы качественного анализа. 3

Аналитические реакции. 3

Условия проведения аналитических реакций. 5

Реактивы.. 5

Систематический и дробный анализ. 6

Оборудование и посуда. 8

Классификация анионов и групповые реагенты.. 13

Общая характеристика анионов первой группы.. 15

Обнаружение анионов первой группы.. 15

Частные реакции анионов первой группы.. 17

Общая характеристика анионов второй группы.. 18

Обнаружение анионов второй группы.. 18

Частные реакции анионов второй группы.. 19

Общая характеристика анионов третьей группы.. 20

Обнаружение анионов третьей группы.. 20

Частные реакции анионов третьей группы.. 21

Заключение. 22

Литература. 24

Введение

Ц

ель аналитической химии - установление качест­венного и количественного состава вещества или смеси веществ. В соответствии с этим аналитическая химия делится на качественный и количественный анализ.

Задачей качественного анализа является выяснение качественного состава вещества, т. е. из каких элемен­тов или ионов состоит данное вещество.

При изучении состава неорганических веществ в большинстве случаев приходится иметь дело с водными растворами кислот, солей и оснований. Эти вещества яв­ляются электролитами и в растворах диссоциированы на ионы. Поэтому анализ сводится к определению от­дельных ионов — катионов и анионов.

При проведении качественного анализа можно рабо­тать с различными количествами исследуемого вещест­ва. Имеются так называемые грамм-метод, при котором масса исследуемого вещества берется более 0,5 г (более 10 мл раствора), сантиграмм-метод (масса исследуемого вещества от 0,05 до 0,5 г, или 1—10 мл раствора), мил­лиграмм-метод (масса исследуемого вещества от 10 -6 г до 10 -3 г, или от 0,001 до 0,1 мл раствора) и др. Наибо­лее распространенным является сантиграмм-метод, или полумикрометод.]

Методы качественного анализа

М

етоды качественного анализа делятся на химиче­ские, физико-химические и физические.

Физические методы основаны на изучении фи­зических свойств анализируемого вещества. К этим ме­тодам относятся спектральный, рентгеноструктурный, масс-спектрометрический анализы и др.

Вфизико-химических методах течение ре­акции фиксируется измерением определенного физического свойства исследуемого раствора. К этим методам относятся полярография, хроматография и др.

К химическим методам относятся методы, ос­нованные на использовании химических свойств иссле­дуемых веществ.

Аналитические реакции

Анализ вещества, проводи­мый в растворах, называется анализом мокрым путем. Это основной путь полного определения соста­ва вещества. При этом применяют реакции образования осадка, окрашенных соединений или выделения газа. Эти реакции проводят обычно в пробирках. Ряд качест­венных реакций проводят на предметных стеклах и об­разующиеся кристаллы рассматривают под микроско­пом. Это так называемые микрокристаллоскопические реакции. Иногда прибегают к выполнению реакций ка­пельным методом. Для этого на полоску фильтроваль­ной бумаги наносят каплю испытуемого раствора и кап­лю реактива и рассматривают окраску пятна на бу­маге.

Реакции, проводимые сухим путем (не в раство­рах), обычно применяются как вспомогательные, глав­ным образом при предварительных испытаниях. Из ре­акций, проводимых сухим путем, чаще применяются ре­акции окрашивания перлов буры. В качественном анализе используются также пирохимические реакции: окраши­вание пламени в различные цвета летучими солями не­которых катионов.

В химическом анализе используется лишь незначи­тельная часть того многообразия реакций, которое свой­ственно данному иону

Для открытия ионов пользуются реакциями, сопро­вождающимися различными внешними изменениями, на­пример выпадением или растворением осадка, измене­нием окраски раствора, выделением газов, т. е. откры­ваемый ион переводят в соединение, внешний вид и свойства которого характерны и хорошо известны. Про­исходящее при этом химическое превращение называет­ся аналитической реакцией.

Вещества, с помощью которых выполняется открытие ионов, называются реактивами на соответствующие ио­ны. Реакции, характерные для какого-либо иона, назы­ваются частными реакциями этого иона.

Аналитическая реакция должна отвечать определен­ным требованиям. Она должна протекать не слишком медленно и быть достаточно простой по выполнению.

Для аналитических реакций важнейшими требова­ниями являются специфичность и чувствительность. Чем меньшее количество ионов вступает в реакцию с данным реактивом, тем более специфична данная реакция. Чем меньшее количество вещества может быть опреде­лено с помощью данного реактива, тем более чувстви­тельна эта реакция.

Чувствительность реакции можно охарактеризовать количественно при помощи двух показателей: открывае­мого минимума и предельного разбавления.

Открываемым минимумом называется наименьшее количество вещества или иона, которое может быть от­крыто данным реактивом при данных условиях.

Предельное разбавление характеризует наименьшую концентрацию вещества (или иона), при которой еще возможно открыть его данным реактивом.

Условия проведения аналитических реакций

Выпол­нение каждой аналитической реакции требует соблюде­ния определенных условий ее проведения, важнейшими из которых являются:

1) концентрация реагирующих ве­ществ,

2) среда раствора,

3) температура.

Реактивы

Реактивы используемые для выполнения аналитиче­ских реакций, делятся на специфические, избиратель­ные, или селективные, и групповые.

Специфические реактивы образуют характерный оса­док или окрашивание только с определенным ионом. Например, реактив Кз[Fе(СN)6] образует темно-синий осадок только с ионами Fe2+.

Избирательные, или селективные, реактивы реагиру­ют с несколькими ионами, которые могут принадлежать к одной или к разным группам.

Например, реактив KI реагирует с ионами Pb2+, Ag+, Hg22+ (II группа), а так­же с ионами Hg2+ и Си 2+ (VI группа).

Групповой реактив вступает в реакцию со всеми ио­нами данной группы. С помощью этого реактива ионы данной группы можно отделить от ионов других групп. Например, групповым реактивом второй аналитической группы является хлороводородная кислота, которая с катионами Pb2+, Ag+, Hg22+ образует белые труднорас­творимые осадки.

Систематический и дробный анализ

Большин­ство аналитических реакций недостаточно специфично и дает сходный эффект с несколькими ионами. Поэтому в процессе анализа приходится прибегать к отделению ионов друг от друга. Таким образом, открытие ионов проводится в определенной последовательности. После­довательное разделение ионов и их открытие носит на­звание систематического хода анализа.

Систематический ход анализа основан на том, что сначала с помощью групповых реактивов разделяют смесь ионов на группы и подгруппы, а затем уже в пре­делах этих подгрупп обнаруживают каждый ион харак­терными реакциями. Групповыми реагентами действу­ют на смесь ионов последовательно и в строго опреде­ленном порядке.

В ряде случаев прибегают не к систематическому разделению ионов, а к дробному методу анализа. Этот метод основан на открытии ионов специфическими реак­циями, проводимыми в отдельных порциях исследуемого раствора. Так, например, ион Fe2+ можно открыть при помощи реактива Кз[Fе(СN)6] в присутствии любых ионов.

Так как специфических реакций немного, то в ряде случаев мешающее влияние посторонних ионов устраня­ют маскирующими средствами. Например, ион Zn2+ можно открыть в присутствии Fe2+ при помо­щи реактива (NH4)2[Hg(SCN)4], связывая мешающие ионы Fe2+ гидротартратом натрия в бесцветный комп­лекс.

Дробный анализ имеет ряд преимуществ перед систе­матическим ходом анализа: возможность обнаруживать ионы в отдельных порциях в любой последовательности, а также экономия времени и реактивов.

Но так как специфических реакций немного и ме­шающее влияние многих ионов нельзя устранить маски­рующими средствами, в случае присутствия в растворе многих катионов из разных групп прибегают к систе­матическому ходу анализа, открывая лишь некоторые ионы дробным методом.

Оборудование и посуда

Н

аиболее удобно в обычной практике проводить ка­чественное исследование полумикрометодом. Этот метод не требует больших количеств веществ для анализа, дает значительную экономию времени и реактивов по срав­нению с макрометодом. В то же время этот методзначительно проще микрометода, требующего специальной аппаратуры и особых навыков работы.

Для работы полумикрометодом в лаборатории необ­ходимо иметь следующее оборудование.

1. Переносной деревянный штатив с набором капель­ниц с растворами солей, реактивов, кислот и щелочей и баночек с сухими солями (рис. 1).

Рис. 1.

2. Штатив для пробирок.

3. Металлический штатив с кольцом, фарфоровым треугольником и асбестированной сеткой.

4. Держатели для пробирок.