Впрочем, интерес к мышьяку был связан не только со свободными радикалами, ведь Григорий Алексеевич читал уже в Военно-технической академии курс химии отравляющих веществ (ОВ), а адамсит — типичный их представитель. Более того, Григорий Алексеевич был автором, по-видимому, первой в Советской России монографии по химии ОВ. Одновременно это было и введение в химию элементоорганических соединений. К сожалению, книга известна лишь ограниченному кругу лиц, так как после ареста автора она была изъята из библиотек и лабораторий.
В 1929 г. Г.А. Разуваев — тогда уже заместитель директора Государственного института высоких давлений — по предложению В.Н. Ипатьева был командирован в Мюнхен, в лабораторию лауреата Нобелевской премии профессора Г. Виланда. Стажировка осуществлялась за счет международной премии В.Н. Ипатьева, находящейся на банковском счете в Германии. Но почему именно Г. Виланд? Имя этого классика органической химии тесно связано со свободными радикалами. Еще в 1911 г. им было доказано существование дифенилазотного радикала в равновесном процессе диссоциации тетрафенилгидразина.
В 1929 г. Ф. Панет и В. Хофедиц однозначно установили факт существования в газовой фазе метильного радикала, образующегося при термораспаде тетраметилсвинца, и даже точно измерили время его жизни. На повестке дня стоял вопрос о возможности существования и химическом поведении короткоживущих радикалов в жидкой фазе. И Г. Виланд обратился к изучению термораспада нестабильных органических пероксидов. Именно эта тематика и предложена была молодому русскому исследователю — синтез и распад несимметричных диацильных пероксидов в растворах. Г.А. Разуваев убедительно показал, что эти реакции протекают по свободнорадикальному механизму; результаты исследований были опубликованы в 1930 — 1931 гг., после возвращения на родину. В Мюнхене у Г. Виланда работал молодой интернациональный коллектив ученых-стажеров из различных стран мира (Англии, Японии, Испании, Эквадора и др.). С некоторыми из них Григорий Алексеевич поддерживал теплые дружеские отношения до последних дней жизни.
По окончании стажировки, в начале 30-х годов, Григорий Алексеевич продолжил исследования МОС. Ему удалось обнаружить некоторые фундаментальные закономерности процессов их термораспада. Так был установлен ряд активности радикалов, образующихся в реакциях термического разложения различных симметричных ртутьорганических соединений под давлением в растворах в спирте или тетралине.
Этот ряд относится к реакции гемолитического отрыва радикалом R атома водорода от растворителя и выглядит следующим образом:
α-Нафтил > п-толил > п-бромфенил > п-этилфенил> п-анизил > фенил > бензил.
Подобный процесс распада протекает в значительно более мягких условиях в присутствии катализаторов — порошков таких металлов, как серебро, золото, палладий, платина и т.п. И в этой реакции радикалы по активности располагаются в том же ряду, названном "ряд Разуваева". Эти работы открыли цикл фундаментальных и прикладных исследований процессов осаждения неорганических покрытий и материалов при распаде металлоорганических соединений.
При исследовании реакций вытеснения из МОС одного металла другим (окислительное переметаллирование) Г.А. Разуваев установил ряд вытеснительной активности металлов: ртуть, висмут, свинец, сурьма, мышьяк, олово. Каждый правостоящий металл вытесняет левостоящий из его МОС:
3R2Hg + 2Bi → 2R3Bi + 3Hg
Благодаря участию академика Александра Николаевича Несмеянова Григорий Алексеевич защитил в 1945 г. в Институте органической химии АН СССР кандидатскую диссертацию "Мерихиноидные соединения фенарсазинового ряда", а через несколько месяцев, уже в 1946 г., докторскую диссертацию на тему: "Свободнорадикальные реакции металлорганических соединений".
В 1947 г., определяясь с местом дальнейшей жизни и деятельности, Г.А. Разуваев выбрал город Горький, где, как он знал, есть крупная химическая база — заводы в Дзержинске Горьковской области, заложенные в свое время В.Н. Ипатьевым. Был в Горьком и университет с химическим факультетом. В том же году доктора химических наук Григория Алексеевича Разуваева пригласили заведовать кафедрой органической химии в Горьковском университете им. Н.И. Лобачевского. Бывший руководитель этой кафедры член-корреспондент АН СССР А.Д. Петров, знавший Григория Алексеевича по учебе и работе в Ленинграде, представляя его преподавательскому составу факультета, сказал: "Это бриллиант чистейшей воды". Последующая деятельность профессора Г.А. Разуваева в Горьком подтвердила такую оценку. С 1947 г., одновременно с заведованием кафедрой, Григорий Алексеевич возглавил лабораторию в Научно-исследовательском институте химии при ГГУ. С этого времени для 52-летнего ученого начался наиболее плодотворный период исследований в области химии свободных радикалов и МОС.Предстояло решить новые задачи для науки — расширение круга свободнорадикальных реакций и методов их генерации. Это необходимо для того, чтобы правильно определиться с местом и ролью радикалов во всем многообразии химических процессов.
Второе направление — собственно химия свободных радикалов. К тому времени здесь накопился целый клубок вопросов (кстати, не распутанный до конца и по сей день). Например, химическое поведение свободных радикалов не должно зависеть от их происхождения, от природы первичного источника и способа генерации. Эксперименты же сплошь и рядом свидетельствовали о противоположном. Так, фенильные радикалы из пероксида бензоила и из дифенилртути вели себя различно. Более того, фотолиз и термолиз одного и того же объекта часто приводил к различным продуктам. Возникает вопрос — а свободные ли эти радикалы?
Третья проблема — возможность создания новых практически важных химических процессов и качественная модернизация уже известных на основе фундаментальных знаний о свободных радикалах в жидкой фазе.
В первую очередь начались исследования трех классов соединений, являющихся источниками свободных радикалов: металлоорганических, пероксидов и азосоединений.
Важной областью исследований Г.А. Разуваева были цепные свободнорадикальные реакции. Совместно с Ю.А. Ольдекопом и Н.А. Майером в середине 50-х годов было обнаружено инициированное свободными радикалами или УФ-облучением декарбоксилирование ртутных солей органических кислот:
(RCOO)2Hg → R-HgOCOR + CO2 (УФ, пероксид)
В дальнейшем реакция Разуваева-Ольдекопа-Майера была весьма детально исследована во всех ее вариантах и легла в основу нового метода синтеза ртутьорганических соединений.
Вновь обратимся теперь к пероксидам. Эти объекты, как уже отмечалось, были в числе первых и наиболее перспективных источников свободных радикалов, с которыми Г.А. Разуваев начал работу в Горьком. Решая фундаментальные проблемы химии свободных радикалов и закономерностей цепных процессов, он понимал необходимость практического использования новых знаний. Постоянное стремление приобщить практиков к полученным научным результатам — отличительная особенность стиля работы Григория Алексеевича. Он сумел привлечь к сотрудничеству с кафедрой и НИИ Химии, где был директором, буквально десятки химиков с химических предприятий Дзержинска. Достаточно сказать, что на протяжении более двух десятилетий каждую неделю он по вторникам с раннего утра направлялся в Дзержинск и полный день занимался там прикладными вопросами. И неудивительно, что сегодня на предприятиях и в исследовательских институтах Дзержинска на ключевых постах работают его "остепененные" ученики — бывшие аспиранты, а теперь в большинстве своем доктора наук.
В начале 50-х годов остро стояли вопросы разработки новых инициаторов полимеризации виниловых мономеров. Их было очень мало, что сдерживало развитие новых технологий и производств. Из пероксидных инициаторов практически использовались лишь пероксид бензоила да персульфат аммония (для эмульсионной полимеризации). Поэтому Григорий Алексеевич начал поисковые исследования в области синтеза новых высокоэффективных пероксидных инициаторов. Среди многих вариантов наиболее интересными оказались диалкилпероксидикарбонаты. Был разработан промышленный синтез одного из них — дициклогексилпероксидикарбоната (ЦПК) (Г.А. Разуваев, Л.М. Терман, 1960 — 1965 гг.).
ЦПК очень удобен как инициатор радикальной полимеризации(30-40о). Для сравнения, пероксид бензоила начинает распадаться на радикалы при температурах выше 70—80°С.
ЦПК был быстро внедрен в производство на предприятиях Дзержинска и Челябинска. С тех пор прошло тридцать лет, но, несмотря на темпы современного развития, он по-прежнему остается лучшим инициатором полимеризации для ряда мономеров, особенно для метилметакрилата.
Далее школа Г.А. Разуваева перешла к новому циклу исследований, базирующихся на результатах первого этапа и, несомненно, стимулированных мировым научным прогрессом. Ключевым направлением на новом этапе стала синтетическая металлорганическая химия непереходных и переходных элементов. Но почему именно она? Причин было несколько.
Прежде всего, начавшееся развитие исследований в области радикальных реакций МОС подгруппы кремния привело к формированию крупного направления с интересными синтетическими возможностями и выходом на совершенно новые объекты. Далее, в 50-е годы научный мир пережил становление металлоорганической химии переходных металлов в связи с открытием сэндвич-соединений (ферроцен и др.) и установлением структуры комплексов Хейна как бисаренхромовых соединений. Примерно в то же время появились каталитические системы на основе МОС — комплексные катализаторы, совершившие буквально революцию в полимеризации низших олефинов (этилена, пропилена). На повестку дня встал вопрос поиска каталитических систем для фиксации атмосферного азота и некоторых других глобально важных процессов. Следовательно, наступило время возвратиться к систематическим исследованиям МОС переходных металлов после неудачных попыток 30-х годов.