и расположения О - сульфатных групп , а также от размера скелета молекулы
этого полисахарида . Активность выше в препаратах с большим содержанием
эфиросвязанной серы . С.В. Бычков и В.Н. Харламова (1975) показали , что
активность фракции , в которой на дисахаридную структурную единицу прихо-
дится четыре остатка серной кислоты , в 1,4 раза превышает активность фра-
кции гепарина с тремя остатками . Таким образом , антикоагулянтные актив -ность гепарина растет по мере увеличения содержания в молекуле остат-
ков серной кислоты. Видимо, данная активность зависит от положения остатков серной кислоты в молекуле гепарина , а также от длины цепи моле кулы . В экспериментах с плазмой крови кроликов получено , что максималь-
ная антикоагулянтная активность гепарина проявляется при рН плазмы
7,3—7,5 , а минимальная при рН 6,1—6,5.
Высказано утверждение , что биологическая активность гепарина опреде-
ляется степенью сульфатации , карбоксилации , а также размером , формой
молекулы и молекулярным весом . В частности , показано , что десульфирование , происходящее в результате мягкого гидролиза , сопро- вождается уменьшением биологической активности . При сильной щелочной
реакции среды гепарин разрушается , что выражается в быстрой потере им
в первую очередь антилипемической активности . С другой стороны , даже
низкая кислотность вызывает потерю гепарином антикоагулянтной активности.
Причем степень этой потери прямо пропорциональна степени появления в
молекуле гепарина свободных аминогрупп . Полная инактивация происходит
когда более половины азота присутствуют в форме свободных NH2 - групп .
Под действием горячей уксусной кислоты гепарин теряет значительную часть
антикоагулянтной активности при одновременном сохранении молекулярного
веса и содержания глюкозамина . При этом наблюдается увеличение кон- станты седиментации и степени полидисперсности параллельно с умень-
шением фрикционного соотношения . Предполагается , что аминный азот ,
который первым отщепляется в процессе рекристаллизации гепарина после
его обработки кислотой , играет важную роль в проявлении антикоагулянтной
активности . При рН среды 1—2 и 25° в течение 25 часов изменения биоло-
гической активности гепарина не происходит . Изменение активности наб-
людается после воздействия в течение 60 часов рН 4,4 и 23° . Видимо под влиянием кислоты в молекуле гепарина образуются внутренние эфиры , что объясняет наблюдаемые изменения молекулярного веса , внутренней
вязкости и состава молекулы .
Многочасовое воздействие на бычий a- и w- гепарин 40%-ной уксусной
кислотой при 37° сопровождалось потерей этими веществами 7—8% суль-
фатных групп и почти 100% антикоагулянтных свойств .
Гепарин не изменяет своих нативных свойств , в частности антикоагу-
лянтной активности , в процессе обработки его паром при 100° в течение
часа при рН 7 . Следовательно , гепарин можно стерилизовать .
Отмечена корреляция между антикоагулянтной активностью фракций
гепарина и его молекулярным весом . Так даже при незначительном уров- не сульфата (2,0 — 2,8 сульфатных групп на остаток глюкозы) у препара-
тов гепарина с низким молекулярным весом (степень полимеризации равна
9) отмечалась слабая активность . Интересно , что сульфатированные дек-
страны с высоким молекулярным весом также проявляют весьма высокую
антикоагулянтную активность . Активность низкомолекулярных фракций гепа-
рина мала . Антикоагулянтная активность гепарина с молекулярным весом
от 2500 до 15500 увеличивается по мере возрастания молекулярного веса
до 10000 , но дальнейшее возрастание не вызывает заметных сдвигов .
Уменьшение молекулярного веса гепарина при гидролизе в большей мере
обусловлено степенью десульфатации молекулы , чем ее деполимеризации.
При частичном гидролизе отмечено также падение молекулярного веса
и соотношения осей молекулы гепарина , а также снижение вязкости в
воде . С помощью дисперсии оптического вращения показано , что N -
- десульфатация гепарина не изменяет его естественной структуры , но
полная десульфатация вызывает исчезновение нативной конформации .
g-облучение вызывало деполимеризацию гепарина , но десульфатация при этом не наблюдалась . Воздействие УФ - излучения снижало антикоагулян-
тную активность и уменьшало потенциальную возможность связывания их
катионных красителей . Поток же электронов обусловливал деполиремиза-
цию гепарина .
Действие гепарина , ингибитора практически всех фаз процесса сверты-
вания крови , проявляется при наличии и участии кофактора гепарина ,
присутствующего в плазме крови . Кофактор гепарина , возможно , предста- вляет собой одну из фракций сывороточного альбумина .
Прежде всего необходимо подчеркнуть , что в настоящий момент нет пол-
ной ясности относительно механизмов биосинтеза гепарина . Исходные
вещества необходимые организму для образования гепарина , - глюкоза и
неорганический фосфат . Сульфатация происходит в тучных клетках сразуже вслед за полимеризацией .Напротив , Райс и соавторы (Rice et al.,1967)
считают , что перенос сульфата происходит на низкомолекулярные пред-
шественники . Предполагают также , что способность управлять переходом
сульфата в N - десульфированный гепарин проявляет микросомальная фракция из гомогената мастоцитов опухоли и что свободные аминогруппы
необходимы для энзиматической N - сульфатации гликозаминогликанов
На основании экспериментов , проводимых на ткани мастоцитомы мы - ши , по изучению биосинтеза специфического остатка глюкуроновой кис- лоты была предложена схема реакций биосинтеза в области связи ге-
парин - полипептид . Высказано предположение , что в процессе синтеза происходит ряд специфических гликозилтрансферазных реакций . При этом
продукт каждого предыдущего этапа служит субстратом для следующей
реакции . Для каждой реакции переноса необходим отдельный фермент .
наличие одного из таких ферментов - глюкуронозилтрансферазы обнаруже-
но в мембране тучных клеток .
Вопрос о точной локализации структур , связанных с биосинтезом
гепарина , до сих пор не решен . Однако есть многочисленные указания
на то , что непосредственное отношение к синтезу имеют тучные клетки
соединительной ткани , а также генетически родственные и функциональ-
но близкие им базофильные клетки крови , в связи с чем и те и другие
получили название “гепариноциты”. Доказано , что содержащие гепарин
гранулы тучных клеток выделяют это вещество в межклетники и кровь .
Также базофилы служат источником гепарина , выделяя в плазму крови
небольшие порции этого антикоагулянта . Но отмечая несоответствие между общим количеством гепарина в организме и его содержанием в
тучных клетках , предполагает возможность существования и других источ-
ников гепарина .
Известно , что тучные клетки , имеющиеся в организме не только выс-
ших животных , но и морских звезд , моллюсков , ракообразных и представляющие собой обязательную часть соединительной ткани , разви-
ваются из тканей мезенхимы . Предшественниками тучных клеток являют-
ся , очевидно , промакрофоги моноцитарного происхождения . Вероятно , кле-
точные элементы крови моноцитарного ряда , проникая в межклетники сое-
динительной ткани , дают начало тучным клеткам . Как считается , молодые
тучные клетки берут свое происхождение от клеток , подобных средним
лимфоцитам . последние также активно синтезируют гепарин и другие су-
льфатированные мукополисахариды .
Основанием для утверждения о непосредственном отношении тучных клеток к процессу свертывания крови послужило их расположение вблизи
кровеносных сосудов , а также то , что они являются носителями гепарина.
До 90% всей массы тучных клеток приходится на заполняющие цитоплаз-
му базофильные метахроматические гранулы диаметром 0,3 - 1,0 мк . На
1 мг тучных клеток крысы приходится 316 международных единиц гепарина,
который весьма прочно связан с гранулами , так что его можно выделить
лишь после их разрушения . Наряду с этим имеются указания на то , что
гепарин находится в цитоплазме в свободном состоянии .
В пользу того , что гепарин синтезируется в тучных клетках , говорит факт обнаружения в них ряда ферментов , обеспечиваюших образование
сульфатированных мукополисахаридов . Весьма важным доказательством
служит и то , что меченые предшественники включаются в гепарин гранул
тучных клеток , сам же предварительно меченый гепарин в них не обна-
руживается . Кроме гепарина в гранулах тучных клеток разных видов мле-
копитающих содержатся нейтральные мукополисахариды , гепарин - моно-
сульфат . Основу гранул представляет комплекс белок - гепарин . Гепарин
существует преимущественно в жесткой валентной комбинации с белками
и практически не обнаруживается в заметных количествах как экстрацел-
лулярный компонент соединительной ткани . Прочная связь гепарина и бел-
ка при этом обусловлена соединением сульфатных и карбоксильных групп
полисахарида с NH-группами аргинина белка . Менее прочно с этим ком-
плексом посредством свободных СОО - групп белка связан гистамин.
Относительно происхождения гранул тучных клеток существует и такая
точка зрения , согласно которой они являются производными аппарата Го-
льджи . С другой стороны считается , что они представляют собой специ-
фические структуры , дифференцировавшиеся из митохондрий .
Гепарин содержится во всех тканях млекопитающих , имеющих клеточные элементы : в печени , легких , селезенке , в стенках кровеносных
сосудов , в пищеварительном тракте , коже и др. Есть он и в муцине сви-