Смекни!
smekni.com

Высокомолекулярные соединения (стр. 2 из 4)

Соответственно полноту химической реакции характеризуют числом прореагировавших элементарных звеньев. Поскольку эти звенья находятся в одной молекулярной цепи, число элементарных звеньев, участвующих в реакции, показывает не выход конечного продукта реакции, как в реакциях низкомолекулярных соединений, а степень химического превращения высокомолекуляр­ного соединения. К тому же исходные и конечные продукты реак­ции объединены в одной молекулярной цепи, что меняет представле­ния «классической» химии о чистом веществе. Поэтому результаты химических превращений высокомолекулярных соединений прихо­дится оценивать статистически.

В тех случаях, когда в результате реакции достигнута исчерпы­вающая полнота превращения всех функциональных групп, полученный продукт, согласно понятиям классической химии, все равно не является чистым веществом вследствие неоднородности полимера по молекулярному весу. Таким образом, вводятся новые понятия: однородность вещества по молекулярному весу и однородность вещества по химическому составу.

Наряду с реакциями элементарных звеньев очень важное значе­ние имеют макромолекулярные реакции полимеров. В этих реакциях макромолекула ведет себя как единое целое и поэтому стехиометрические соотношения реагирующих веществ резко отли­чаются от стехиометрических соотношении веществ в реакциях эле­ментарных звеньев полимеров.

К макромолекулярным реакциям полимеров относятся межмо­лекулярные реакции, в результате которых между макромолекуламиобразуются химические связи и линейные полимеры превращаются в пространственные, а также реакции химической деструкции поли­меров, протекающие под влиянием химических реагентов.

В реакциях элементарных звеньев полимера, вследствие соизме­римости молекулярных весов элементарного звена и реагирующего с ним низкомолекулярного вещества, участвуют обычно соизмеримые количества полимера и низкомолекулярного соединения. При обра­зовании же межмолекулярных связей в реакции участвует, с одной стороны, макромолекула полимера, а с другой — молекула низко* молекулярного соединения, молекулярный вес которого в сотни или тысячи раз меньше молекулярного веса полимера. Например, для обра­зования химической связи между двумя макромолекулами полиакриловой кислоты достаточно одного атома двухвалентного металла:

При этом макромолекулы полиакриловой кислоты теряют свою кинетическую самостоятельность, полимер приобретает пространст­венное строение, в результате чего резко изменяются физические свойства системы.

Весовая доля низкомолекулярного вещества, участвующего в макромолекулярной реакции, ничтожно мала, так как она опреде­ляется соотношением молекулярных весов низкомолекулярного со­единения и полимера. Этим обусловлена одна из важных особенно­стей высокомолекулярных соединений — резкое изменение свойств под влиянием малых добавок некоторых веществ.

При реакциях химической деструкции полимеров на разрыв од­ной связи в полимере расходуется одна молекула низкомолекуляр­ного вещества. Например, при гидролизе полиамидов для омыления одной амидной связи требуется одна молекула воды:

Геометрическая форма макромолекул.

Третья особенность химии высокомолекулярных соедине­ний — это резкая зависимость свойств полимеров от геометрической формы макромолекул. В химии низкомолекулярных соединений от геометрии молекулы зависят лишь свойства отдельных ее атомов. Физико-химические свойства низкомолекулярных соединений, как правило, не рассматриваются в связи с формой молекулы.

В химии высокомолекулярных соединений форма макромолекулы приобретает очень важное значение. Так, макромолекула линей­ного полимера в зависимости от геометрии элементарных звеньев и порядка их чередования (если они различаются по химическому со­ставу и стереометрии) может по своей форме приближаться к жест­кой палочке (полифенилены, полиацетилены), свертываться в спираль (амилоза, нуклеиновые кислоты, пептиды) или в клубок (глобуляр­ные белки). В зависимости от формы макромолекулы линейные полимеры могут значительно различаться по свойствам. Но в то же время они имеют ряд общих свойств, характерных именно для •линейных полимеров, которые отличают их от полимеров с иной гео­метрической формой молекул.

Все линейные полимеры принципиально могут быть переведены в раствор. Растворы линейных полимеров даже при относительно небольших концентрациях обладают высокой вязкостью, в десятки и сотни раз превышающей вязкость соответствующих растворов низко­молекулярных соединений. Многие линейные полимеры могут пла­виться без разложения, причем их расплавы также обладают очень высокой вязкостью. Линейные полимеры, отличаются хорошими физи­ко-механическими свойствами: большой прочностью и эластич­ностью. Гибкость макромолекулы линейных полимеров способствует их растворению и плавлению, а способность гибкой макромолекулы изменять форму под влиянием внешних усилий обусловливает высо­кие эластические свойства. Значительная разрывная прочность ли­нейных полимеров объясняется главным образом тем, что линейные макромолекулы могут достигать высокой степени ориентации отно­сительно друг друга и иметь большую плотность упаковки, что приводит к возникновению многочисленных межмолекулярных связей свысокой суммарной энергией.

Эти особенности свойств линейных полимеров вытекают из их строения. Наличие двух типов связей (химических валентных свя­зей и физических межмолекулярных взаимодействий), различающихся по энергетической характеристике, определяет возможность растворения и плавления линейных полимеров. Высокой степенью асимметрии макромолекул обусловлена высокая вязкость растворов и расплавов линейных полимеров.

Разветвленные полимеры также могут быть переведены в рас­твор, причем при одинаковом химическом составе и молекулярном весе растворимость разветвленных полимеров выше растворимости линейных полимеров.

Прочность разветвленных полимеров и вязкость их растворов зависят от степениитипа разветвления. Полимеры, имеющие относительно небольшое число боковых цепей, очень близки по свойствам к линейным полимерам. Сильноразветвленные полимеры, вследствие значительно меньшей степени асимметрия молекул, образуют растворы пониженной вязкостью. Прочность таких полимеров ниже прочности соответствующих линейных полимеров той же природы.

Сетчатые полимеры резко отличаются по свойствам от линейных и разветвленных полимеров. Они не плавятся без разложения и не могут быть переведены в раствор. Это связано с тем, что в сетчатых полимерах преобладают прочные химические связи между макромо­лекулами. Физические и физико-механические свойства этих поли­меров зависят от числа межмолекулярных химических связей и от регулярности их расположения. С увеличением числа межмолекулярных связей твердость вещества увеличивается, повышается мо­дуль упругости и уменьшается величина относительной деформации, т.е. свойства сетчатого (пространственного) полимера приближают­ся к свойствам кристалла (примером кристаллического полимера с правильной пространственной решеткой является алмаз).

Особенности реакций полимеров.

Химические превращения полимеров дают возможность созда­вать многочисленные новые классы высокомолекулярных соеди­нений и в широком диапазоне изменять свойства и области применения готовых полимеров.

Лучше всего изучены химические свойства природных высоко­молекулярных соединений (целлюлозы, крахмала, белков), которые были известны за много десятков лет до появления синтетических полимеров. Наибольшее внимание уделялось химическим превраще­ниям целлюлозы, обладающей ценными техническими свойствами .и являющейся наиболее широко распространенным природным органи­ческим полимером. Путем химических превращений целлюлозы полу­чают ацетаты целлюлозы, применяемые для производства волокна, лаков, пленок, пластмасс; нитраты целлюлозы для производства пластмасс, пленок, лаков и бездымного пороха; многочисленные про­стые эфиры целлюлозы, имеющие весьма разнообразное применение для производства лаков, пленок, электроизоляционных материалов, в качестве отделочных средств в текстильной промышленности, а так­же присадок при бурении нефтяных скважин.

Когда появились синтетические полимеры, единственным спосо­бом изменения их состава и свойств был подбор новых исходных иономеров. Однако, как выяснилось впоследствии, некоторые полимеры нельзя получить непосредственным синтезом из низкомолекулярных соединений вследствие неустойчивости этих мономеров. Так,

например, поливиниловый спирт, используемый для производства синтетического волокна, а также в качестве эмульгатора, для шлих­товки тканей и в пищевой промышленности, не может быть по­лучен полимеризацией мономера. Его получают омылением готового полимера — поливинилацетата. Ацеталированием поливинилового спирта получают различные поливинилацетали, используемые в про­изводстве лаков и покрытий. Только путем взаимодействия природ­ных и синтетических каучуков с серой и другими полифункциональ­ными соединениями (вулканизация) могут быть получены различные сорта резины и эбонита. Дубление белков, обеспечивающее возмож­ность их технического использования, также основано на химическом взаимодействии белков с альдегидами или другими бифункциональ­ными соединениями. Наконец, к химическим превращениям отно­сится направленная деструкция полимеров, часто применяемая для регулирования молекулярного веса полимеров, перерабатываемых в различных отраслях промышленности. На полном гидролизе целлю­лозы основан Процесс получения гидролизного спирта. Механическая деструкция полимеров используется в промышленном масштабе для изменения физико-химических свойств полимеров, а также для син­теза новых типов сополимеров.