Смекни!
smekni.com

Влияние физических и химических факторов на основность алкиламинов (стр. 2 из 6)


Номер Амин DGBг)
1 NH3 0,0
2 CH3NH2 9,1
3 C2H5NH2 11,8
4 n-C3H7NH2 13,0
5 i-C3H7NH2 14,1
6 n-C4H9NH2 13,5
7 i-C4H9NH2 14,0
8 s-C4H9NH2 15,2
9 t-C4H9NH2 16,1
10 n-C5H11NH2 13,4д)
11 t-C5H11NH2 17,4
12 n-C6H13NH2 13,5д)
13 n-C7H15NH2 13,6д)
14 c-C6H11NH2 16,3
15 NH2-NH2 3,8
16 NH2(CH2)2NH2 19,0д)
17 NH2(CH2)3NH2 24,5д)
18 NH2(CH2)4NH2 27,1д)
19 NH2(CH2)5NH2 25,4д)
20 NH2(CH2)6NH2 25,4д)
21 NH2(CH2)7NH2 25,2е)
22 CH3O(CH2)2NH2 14,7д)
23 H2C=CH-CH2NH2 11,3
24
HCºC-CH2NH2 6,7
25 NCCH2CH2NH2 3,0
26 CF3(CH2)3NH2 10,1
27 FCH2CH2NH2 8,0
28 CF3(CH2)2NH2 6,7
29 F2CHCH2NH2 4,0
30 CF3CH2NH2 -1,4
31
6,8
32 CH3CONH2 0,2ж)
33 HCONH2 -7,1з)
34 (CH3)2NH 15,5
35 CH3NHC2H5 17,9
36 (C2H5)2NH 20,2
37 (n-C3H7)2NH 22,2
38 (i-C3H7)2NH 23,9
39 (n-C4H9)2NH 23,1
40 (i-C4H9)2NH 23,6
41 (s-C4H9)2NH 25,8
42
11,2
43
18,0
44
20,1
45
21,2
46
19,2д)
47
14,4д)
48 (H2C=CHCH2)2NH 19,3
49 (HCºCCH2)2NH 11,7
50 NCCH2NHCH3 2,7з)
51 CF3CH2NHCH3 6,2з)
52
12,9
53
15,3ж)
54
4,0ж)
55

NHMe-C=O

H

1,7
56 (CH3)3N 20,0
57 (CH3)2NC2H5 22,4
58 (C2H5)2NCH3 24,6
59 (C2H5)3N 26,7
60 (C3H7)3N 28,7
61
17,1и)
62
8,1и)
63
24,3
64
25,7
65
27,1
66
26,1к)
67 (CH3)2N-NH2 15,2
68 ((CH3)2NCH2)2 30,3
69
23,5

70

(H2C=CH-CH2)3N 24,7
71 (HCºC-CH2)3N 15,0
72 NCCH2N(CH3)2 7,1
73 F3CCH2N(CH3)2 20,9
74
19,5
75
21,0ж)
76
23,7ж)
77
19,3
78
21,8
79
26,0
80
16,0
81 CH3CON(CH3)2 11,7
82 HCON(CH3)2 7,6
83 NF3 -56л)

Существенные различия между свойствами в газовой и конден­сированной фазах наблюдается и при сравнении оснований одного и того же класса. Например, все первичные алкиламины в газовой фазе (№2—29), за исключением b,b,b-трифторэтиламина (№30), оказались более основными, в то время как в воде (см. например, табл. 1) амины с электроотрицательными заместителями зачастую менее основны, чем аммиак. То самое относится и ко вторичным и третичным алкиламинам.

Данные по изменению свободной энергии и энтальпии реакций, описываемых уравнениями (17) — (2), совместно с некоторыми другими результатами позволили определить термодинамические характеристики процессов переноса свободных и протонированпых оснований из газовой фазы в водные растворы и на этой основе про вести термодинамический анализ влияния сольватации на основ­ность аминов в воде [3, 6, 47, 140, 151, 153]. При этом преимущественное внимание было уделено причинам, обусловливающим наб­людаемый порядок изменения основностии в воде при переходе от аммиака к первичным, вторичным и третичным алкиламинам с насыщенными углеводородными заместителями. На основе этих дан­ных Ариетт с сотрудниками [3, 6, 47] сделал вывод, что главным фактором, определяющим наблюдаемый порядок основности ами­нов различных классов в воде, является специфическая сольвата­ция соответствующих катионов, зависящая от числа атомов водоро­да у протонированного азота. Неспецифическая же сольватация, по их мнению, имеет второстепенное значение, т. е. эти исследователи придерживаются сольватационной (гидратационной) теории Тротмана — Диккенсона (см. выше).

В то же время другая группа исследователей [140, 153] считает, что изменение основности аминов при переходе из газовой фазы в воду обусловлено прежде всего электростатической (неспецифиче­ской) сольватацией катионов, а специфическое взаимодействие иг­рает второстепенную роль. При этом в указанных работах прини­мается, что кислотно-основные свойства соединений в газовой фазе являются истинными (собственными) свойствами, и в противопо­ложность случаю в конденсированной фазе практически не об­суждается зависимость этих свойств от строения аминов.

Следует отметить, что, несмотря на большой интерес, проявля­емый к результатам по основности аминосоединеиий в газовой фазе, пока еще нет общего подхода к объяснению эффектов их структуры на данное свойство. Выявлены только некоторые закономерности, характеризующие поведение отдельных групп родственных аминов. Например, Тафт рассмотрел изменение основности при перехо­де от аммиака к первичным, вторичным и третичным аминам и нашел, что введение одной, двух или трех алкильных групп (СН3; С2Н5; n-С3Н7; Н2С=СН—СН2; НСЕºС—СН2) сопровождается ростом вели­чин DGB в соотношении 1,00 : 1,72 : 2,22. Повышающее основность действие метильных групп при последовательном накоплении их в a-положении может быть представлено пропорциональностью 1,00: :1,85 : 2,60 [7]. Введение метильной группы в a-положение уве­личивает основность амина примерно на 2,1 ккал/моль, в b-и g-положения — на 0,9 и 0,5 ккал/моль соответственно [155].

При сопоставлении ароматических и алифатических аминов с одинаковым числом углеродных атомов у атома азота было найде­но, что изменение гибридизации a-атомов углерода (например, пе­реход от пиридина к N-метилпирролидину, от анилина к циклогексиламину) практически одинаково влияет на изменение основности в воде и газовой фазе [7]. Была также обнаружена приблизительно прямолинейная зависимость между изменениями основности аминосоединений, имеющих одинаковое число углеродных атомов у азота, но разный характер гетероатома, и степенью этой гибридизации [159], а также между основностью алкиламипов и сте­пенью гибридизации b-углеродного атома в алкильном радикале [7]. В тех случаях, когда варьирование заместителя происходит не у реакционного центра, были выявлены более строгие закономер­ности влияния структуры на основность аминов. Так, найдена кор­реляция между DGB для a-замещенных триметиламинов и sI этих заместителей [7]. Величины DGB для 3-й 4-замещенных пиридинов хорошо коррелируют [7, 162, 163] с их основностью в воде и с по­стоянными sI (s°) и sR+ (sG+) характеризующими электронные эффекты заместителей [7, 158, 163]. Аналогичные зависимости (но менее стро­гие) можно получить и при подобных сопоставлениях основности замещенных анилинов в газовой фазе [3, 7].