Реферат на тему:
Системы жидкостного охлаждения для персональных компьютеров
Выполнил: Шнибин Н.Н.,
Факультет ИФ, гр.1213
Санкт-Петербург 2010 г.
В конце позапрошлого века появились первые автомобили. Их двигатели сначала были примитивны, маломощны, шумны и работали на воздушном охлаждении. Но вот не проходит и десяти лет, и вместе с ростом мощности двигатель внутреннего сгорания получает гораздо более эффективное жидкостное охлаждение. Этот способ охлаждения миллионов моторов является неизменным атрибутом комфортного автомобиля и по сегодняшний день. В наше время аналогичная система охлаждения используется и в современных компьютерах.
Введение
Первые ПК не имели проблем с охлаждением своих процессоров вообще. Потом они обзавелись радиаторами. Далее – небольшими вентиляторами. Что мы имеем теперь? Сегодня стоимость средств охлаждения для процессоров из верхнего модельного ряда уже приближается к цене самих CPU из нижних моделей. Чрезвычайно возросла мощность современных кулеров, их габариты, вес, обороты двигателей и диаметр вентиляторов. Стали критичны обработка и качество материала. Если раньше возможностей кулеров хватало с запасом, то сегодня они уже с трудом справляются со своими задачами.
Проблема охлаждения в целом
Как бы не справлялся воздушный кулер с охлаждением процессора, но куда уходит тепло? Ответ ясен – вовнутрь системного блока. Туда же сбрасывают свое тепло и кулер видиокарты, порядком греющиеся приводы жестких и оптических приводов, радиаторы чипсета и т.д. Но все эти устройства охлаждаются тем же воздухом из системного блока, который они сами и нагревают. Круг тепловой конвекции замыкается. Температура внутри корпуса компьютера стала так же актуальна, как и нагрев внутренних устройств. Результат – интенсивная принудительная вентиляция всего системного блока. Если раньше корпуса комплектовались одним посадочным местом под фронтальный вентилятор, причем производители не особо заботились о вентиляционных отверстиях напротив него, то теперь внутри стандартных корпусов предусмотрено 2-3 места под вентиляторы.
Принцип работы жидкостного охлаждения
1) Структурная схема системы жидкостного охлаждения компьютера представлена на рис 1. В состав системы входят помпа, один или несколько теплообменников и радиатор. Перечисленные элементы системы соединяются при помощи шлангов (трубок) в замкнутый контур, внутри которого циркулирует жидкость. Как правило, в качестве рабочей жидкости используется дистиллированная вода с небольшим добавлением какого-либо спирта, например метанола (это препятствует образованию микрофлоры). Помпа создает определенное давление, обеспечивая циркуляцию жидкости в системе. Далее жидкость поступает в теплообменник, проходя через который она нагревается, забирая тепло от активно нагревающегося компонента компьютера. Нагретая жидкость поступает в радиатор, в котором вновь постепенно охлаждается. Затем все повторяется по кругу.
Эффективность работы жидкостной системы охлаждения напрямую зависит от скорости циркуляции воды в контуре и от площади рассеяния радиатора.
В настоящее время на рынке появляются самые разнообразные решения для организации жидкостного охлаждения персональных компьютеров — начиная от отдельных компонентов для самостоятельного творчества и заканчивая готовыми корпусами с интегрированной жидкостной системой охлаждения.
2) Существуют системы жидкостного охлаждения, в конструкции которых такой элемент как помпа отсутствует (рис 2). Но, тем не менее, жидкий хладагент циркулирует внутри такой системы. Используется принцип испарителя, создающего направленное давление для движения охлаждающего вещества. Здесь применяются специальные хладагенты – это жидкость с низкой точкой кипения. Сначала, в холодном состоянии радиатор и магистрали заполнены жидкостью. Но когда радиатор процессора нагревается выше какой-то температуры, жидкость в нем превращается в пар. Здесь нужно добавить, что сам процесс превращения в пар поглощает дополнительную энергию в виде тепла, а значит, повышает эффективность охлаждения. Горячий пар создает давление и старается покинуть пространство радиатора процессора. Через специальный односторонний клапан пар может выйти только в одну сторону – двигаться в радиатор теплообменника-конденсатора. Попадая в радиатор теплообменника, пар вытесняет оттуда холодную жидкость в радиатор процессора, а сам остывает и превращается вновь в жидкость. Таким образом, охлаждающее вещество в чередующихся фазах жидкость-пар постоянно циркулирует по замкнутой системе трубопровода, пока радиатор горячий. Энергией для движения здесь является само тепло, выделяемое охлаждаемым элементом. Системы жидкостного охлаждения, в которых используется принцип испарителя, без применения механического нагнетателя имеют как преимущества, так и недостатки перед традиционными схемами жидкостного охлаждения с применением помпы. Отсутствие механического насоса делает конструкцию более компактной, простой и дешевой. Здесь сведено до минимума количество движущихся механических частей, остается лишь вентилятор конденсатора. Это даст невысокий уровень шума в случае применения тихого вентилятора. Вероятность механических поломок сведена до минимума. С другой стороны, мощность и эффективность таких систем гораздо ниже, чем систем использующих жидкость нагнетаемую насосом. Другая проблема – потребность хорошей герметичности конструкции. Так как здесь используется газовая фаза вещества, то даже при малейшей утечке, со временем система потеряет давление и станет неработоспособной. Причем диагностировать и исправить последнее будет очень сложно.