Курсовая работа:
Режим переконденсации с компактным распределением размеров капель.
Описание проблемы и постановка задачи.
Классические работы Дж.Гиббса, М.Фольмера, Ф.Беккера, В.Дёринга, Я.Френкеля, Я.Зельдовича по физике фазовых переходов I рода относятся к ранним стадиям зарождения новой фазы.
В данной же работе нас интересует процесс конденсации, переходящий из флуктуационного режима роста зародышей новой фазы в стадию переконденсации, именуемую также коалесценцией, или Оствальдовским созреванием [[i]], когда рост крупных капель происходит за счёт растворения более мелких (при условии, что все капли далеки друг от друга).
Режим переконденсации может проходить в одном случае под управлением поглощающей способности поверхности (теория Вагнера: [ [ii]]), когда длина свободного пробега
молекулы много больше радиуса капли , а в другом случае под управлением диффузии в паре (теория Лифшица-Слёзова: [ [iii], [iv]]), когда .Причиной расхождения эксперимента с теорией Лифшица-Слёзова-Вагнера оказалось допущение неограниченного объёма кластеров новой фазы [ [v]].
Поэтому все дальнейшие теоретические исследования Оствальдовского созревания предполагают компактное основание распределения капель по размерам [ [vi], [vii], [viii]].
Поэтому задачей данной работы является описание уравнений и параметров режима переконденсации в условиях существования максимального размера капли.
Коалесценция имеет большое практическое значение, например, в образовании и стабильности поверхностей [ [ix], [x], [xi]].
Описание проблемы и постановка задачи. 1
1). Переписывание уравнений в терминах максимальной капли. 3
2). Соотношения интегральных моментов функции распределения. 5
3). Нахождение автомодельной функции распределения. 6
4). Нормировка функции распределения. 9
5). Предельный случай – распределение Лифшица-Слёзова. 10
1). Переписывание уравнений в терминах максимальной капли.
Оригинальные уравнения теории переконденсации записываются в терминах отношения безразмерного радиуса капли к её критическому радиусу в зависимости от безразмерного времени:
. Наша задача – переписать их в терминах отношения радиуса капли к максимальному радиусу: .Уравнение роста радиуса капли в режиме коалесценции Лифшица-Слёзова:
Тогда уравнение непрерывности для функции распределения по размерам капель:
Подставляем сюда асимптотический анзац Лифшица-Слёзова в новых переменных и с явной зависимостью от времени:
Преобразуем дифференциальное уравнение (обозначая
):Введём
Избавимся от
, подставив в уравнение роста радиуса капли :С учётом этого, а также определения
в , докажем, что является корнем кубического полинома:Тогда окончательно запишется следующим уравнением на функцию распределения:
Зная один корень, найдём делением по схеме Горнера квадратичное выражение в
корень1 | |||||
-1 | 0 | ||||
остаток | |||||
-1 |
остаток = нулю
Таким образом:
Решим квадратное уравнение, полагая корни существующими:
Тем самым мы разложили на множители
, гдеКаждая скобка в таком виде разложения, как мы увидим далее, будет положительна. Заметим также, что
(так что ), что, впрочем, сразу следует из теоремы Виета для по отсутствию квадратичного члена.Итак, уравнение запишется следующим образом:
В этой работе мы рассмотрим автомодельную функцию
, не зависящую явно от времени, при этом в полученном дифференциальном уравнении опускается член с частной производной по времени от функции распределения.2). Соотношения интегральных моментов функции распределения.
Соотношения между интегральными моментами функции распределения можно найти, не зная её явного вида. Для этого проинтегрируем от 0 до 1 левую и правую части дифференциального уравнения , опуская член с производной по времени и вводя моменты:
Интегрируем по частям левую часть: