n m
Это есть решение поставленной задачи.
Как известно, потенциал u волнового поля внутри объема Т, ограниченного замкнутой поверхностью Σ, можно найти с помощью формулы Кирхгофа. Для вычисления потенциала в любой точке М внутри объема Т достаточно знать потенциал u(Р) и нормальную производную потенциала на этой поверхности ∂u(Р) / ∂n [8], где Р – точка, принадлежащая поверхности Σ (см. [2]).
1 ∂ e−ikr e−ikr ∂u(Р)
u(M) = − ∫∫[u(P) ∂n ( k ) − k ∂n ]dσP (15.10.1), 4π Σгде r – расстояние между точками М и Р.
Результаты позволяют записать несколько эквивалентных формулировок уравнения Кирхгофа, которые приводят к одному и тому же решению.
1 ∂ sin kr sin kr ∂u(Р)
u(M) = − ∫∫[u(P) ∂n ( k ) − k ∂n ]dσP (15.10.2)4π Σ
1 ∂ eikr eikr ∂u(Р)
u(M) = − ∫∫[u(P) ∂n ( k ) − k ∂n ]dσP (15.10.3) 4π ΣОднако есть и отличие. Поясним причину такого утверждения. Сама логика доказательства формулы Кирхгофа корректна. Однако есть один момент, который допускает определенный произвол.
В качестве функции v в формуле Грина [8] мы могли бы выбрать любую другую функцию, удовлетворяющую однородному уравнению Гельмгольца Δu +k2u = 0, а не только функцию e-ikr / r.
Любое решение этого уравнения, которое мы выберем в качестве функции v, позволяет однозначно дать решение задачи по нахождению потенциала внутри объема.
Действительно, потенциал на замкнутой поверхности Σ (равно его производная по нормали на поверхности) определяет не только волны, проникающие внутрь объема, но и волны, которые движутся изнутри объема к его поверхности и выходят из него.
По этой причине в объеме Т в окрестности точки М обязательно будут существовать не только поля, сходящиеся к этой точке (типа e-ikr / r), но также поля, уходящие от нее (типа eikr / r). Потенциал и нормальная производная на поверхности Σ полностью определяют искомый потенциал u. В первом параграфе мы уже об этом говорили.
Хотя все три формулы дают одинаковый результат, между ними имеется одно отличие. Попробуем ответить на вопрос: получим ли мы равенство u(M) = u(Р), если мы точку М совместим с точкой Р, лежащей на поверхности Σ? Логика подсказывает, опираясь на непрерывность потенциала и его нормальной производной, что в пределе мы должны иметь это равенство при М = Р. u(M) = u(Р) (15.10.4)
Оказывается, что такое равенство не всегда возможно. Оно возможно лишь в том случае, если только в качестве функции v выбрана функция sin (kr) / r. Если же мы выберем функцию eikr / r или же е-ikr / r, то в пределе мы получим бесконечное значение величины u(M) , т.е. u(M) ≠ u(Р), если M → Р. Это обусловлено появлением на поверхности Σ
«скрытых» источников потенциала, обусловленных выбором функции v, а также «скрытых» источников потенциала при r →0.
Источники информации:
1. Кулигин В.А. Поведение волны в окрестности фокуса. // Вопросы рассеяния и оптимального приема радиоволн.ВГУ, Воронеж. 1975.
2. Каценеленбаум Б.З. Высокочастотная электродинамика. Наука. М. 1966.
3. Ватсон Г.Н. Теория бесселевых функций. Перев. с англ., М., ИЛ. 1949.
4. Кулигин В.А., Кулигина Г.А., Корнева М.В. Ревизия теоретических основ релятивистской электродинамики. http://www.n-t.org/tp/ns/rt.htm 25.06.2006.
5. Степанов В.В. Курс дифференциальных уравнений. ГИФФМЛ. М. 1958.
6. Ландау Л.Д., Лифшиц Е.М. Теория поля. ГИФФМЛ. М. 1960.
7. Кулигин В.А., Кулигина Г.А., Корнева М.В. «Конвективный потенциал» и философия. http://www.inauka.ru/blogs/article66754.html , 01.09.2006.
8. Тихонов А.Н., Самарский А.А. Уравнения математической физики. ГИТТЛ, М. 1953.
Итак, нами были проанализированы основы классической электродинамики и, как следствие, оценена совместимость ее со специальной теорией относительности. Результаты оказались отличными от тех предрассудков, которые сопровождают эти теории в настоящее время.
Перечислим их:
Поля электромагнитной волны и поля зарядов обладают разными свойствами и соответствуют различным видам материи. Они должны описываться самостоятельными группами уравнений.
Взаимодействие зарядов между собой описывается мгновенно действующими потенциалами. Такое взаимодействие отвечает контактному типу объемного характера и не противоречит принципу причинности.
Теоретически были получены свои законы сохранения для электромагнитных волн и свои законы для квазистатических полей зарядов. Эти законы не сводимы друг к другу.
Выяснено, что предельный переход от волновых явлений к квазистатическим не существует.
Попытки описать все явления электродинамики, опираясь на эфир и волны в нем, заведомо не могут привести к положительному результату в силу диссипативного характера взаимодействия волны с материальными объектами. Такое взаимодействие должно приводить к неизбежному рассеянию электромагнитных волн и к нарушению принципа равенства действия противодействию.
Теория относительности не «вписывается» в современную электродинамику и противоречит ей. Основные причины в том, что (во-первых) эйнштейновская интерпретация пространственно-временных отношений ошибочна и ведет к логическим противоречиям, и (во вторых) в том, что преобразование Лоренца было произвольно (бездоказательно) распространено на все явления материального мира. Отметим математическую некорректность релятивистского вариационного принципа.
Такое положение сложилось благодаря господству в физике позитивистского мировоззрения и сложившемуся, благодаря этому, догматизму. Мы специально говорим о философии (как научном мировоззрении), поскольку любая теория, любая интерпретация опирается именно на мировоззренческие позиции ученого.
Здесь следует иметь в виду, что не существует «чистого» эксперимента. Эксперимент должен иметь объяснение, которое неизбежно опирается на какую-либо теорию или физическую модель. Без теории невозможно дать объяснение эксперименту.
Точно также не существует «чистой» физической теории (гипотезы, модели) вне мировоззрения. Мировоззрение (= миропонимание) есть неотъемлемая часть интерпретации физической теории. Она невозможна вне рамок мировоззренческих установок.
Физическая теория не сводится к «чистому» математическому формализму. Она содержит концептуальную составляющую, т.е. описательную и объяснительную сторону. По этой причине материалистическая философия (мировоззрение) должна быть таким же мощным инструментом познания, как и математика. Именно эта сторона весьма бледно представлена в современной квантовой механике, СТО, ОТО и КЭД. Здесь не место обсуждать проблемы этих теорий. Но в них «голое мастерство математического формализма» доминирует над физическим смыслом (= мировоззренческим содержанием).
В работах [1], [2], [3] и др. мы постарались показать важную роль, которую играет материалистическая теория познания (материалистическая философия) в фундаментальных исследованиях. Но эти работы выглядят «белыми воронами» на фоне преобладающих в философской литературе позитивистских «исследований», лояльных мнениям авторитетов.
Роль материалистической философии не только в этом. Поскольку ее теория познания нацелена на поиск научной истины и обладает для этого необходимыми качествами (выполняет определенные критериальные функции), она формирует правильные нравственные установки у исследователей: честность, ответственность, добросовестность, взаимное уважение и т.д. Для позитивизма это непосильная задача, поскольку он опирается на поклонение авторитетам, на достижение успеха «любой ценой» и т.п. Мы убеждены, что материалистическое мировоззрение, в конце концов, пробьет себе путь в физике, и физика освободится от существующих догм и предрассудков, сообразно здравому смыслу и логике.
Источники информации:
1. Кулигин В.А., Кулигина Г.А., Корнева М.В. Физика и философия физики. n-t.ru/tp/ns/fff.htm
2. Кулигин В.А. Вавилонская башня вульгарного позитивизма. n-t.ru/tp/ns/vb.htm
3. Кулигин В.А., Кулигина Г.А., Корнева М.В. «Конвективный потенциал» и философия. btr.nnov.ru/kuligin-1
[1] ⎡∂L ∂L ⎤
δS = ∫s1 ⎢⎣
∂xi δxi + ∂ui δui ⎥⎦ds = 0 (П.11.1)Учитывая, что δds = 0, найдем