Смекни!
smekni.com

Спектрометр альфа излучения на основе газоразрядного детектора (стр. 2 из 7)

Радон-222 встречается в природе в 20 раз чаще, чем радон-220, а содержание в природе актинона и вовсе ничтожное, так как соотношение урана-238 и урана-235 в месторождениях равно 0,00725. Поэтому, говоря о радоне, подразумевают, прежде всего, радон-222. Ядра радона-222 при радиоактивном распаде излучают альфачастицы, превращаясь в ядра полония-218, при альфа распаде которых получается свинец-214. При бета-распаде этого радионуклида образуется висмут-214, который, в свою очередь, превращается в полоний-214, испуская бета-частицу. При альфа распаде последнего возникает относительно долгоживущий свинец-210 (с периодом полураспада 22,3 года) и далее – стабильный изотоп свинца-206 в качестве конечного продукта.

Радон и торон присутствуют, как и его материнские нуклиды, во всех строительных материалах и горных породах. Образующийся в процессе распада инертный газ тотчас же диффундирует через капилляры грунта, микротрещины горных пород, захватывается потоками других газов и, несмотря на ограниченное время жизни, может транспортироваться на значительные расстояния в земной коре и земной атмосфере. Причем естественная убыль этих газов за счет выделения из материалов (процессы эманации – выделения из кристаллической решетки и эксхаляции – испарение или выделение с поверхности) и естественного распада постоянно компенсируется за счет распада радия и тория, присутствующих в данном материале.

1.2.Источники радона в окружающей среде

Радон попадает в атмосферу помещений различными путями: а) проникает из недр Земли; б) выделяется из строительных материалов (цемент, щебень, кирпич), из которых построено здание; в) привносится с водопроводной водой, бытовым газом и другими продуктами жизнеобеспечения (рис. 2).

Радон высвобождается из земной коры повсеместно, но его концентрация в наружном воздухе существенно различается для разных точек земного шара. Радон концентрируется в воздухе внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды (рис. 4.). Поступая внутрь помещения тем или иным путем (просачиваясь через фундамент и пол из грунта или, реже, высвобождаясь из материалов, использованных в конструкции дома), радон накапливается в нем. В результате в помещении могут возникать довольно высокие уровни радиации, особенно если дом стоит на грунте с относительно повышенным содержанием радионуклидов или если при его постройке использовали материалы с повышенной радиоактивностью, герметизация помещений с целью утепления только усугубляет дело, поскольку при этом еще более затрудняется выход радиоактивного газа из помещения.

Рис. 2. Основные пути попадания радона в здание: из грунта по трещинам и щелям, из стен и строительных конструкций

Очень высокие концентрации радона регистрируют последнее время все чаще. Так, в последнее время, строения, внутри которых концентрация радона в 5000 раз превышала среднюю его концентрацию в наружном воздухе, были обнаружены в Швеции и Финляндии. Строения с уровнями радиации, в 500 раз превышающими типичные значения в наружном воздухе, были выявлены и в Великобритании, и США. Кроме того, были обнаружены жилища с концентрацией радона, примерно равной его максимальной концентрации в жилых домах в скандинавских странах. При дальнейших обследованиях такого рода выявляется все больше домов с очень высокой концентрацией радона и других странах, в том числе и в России.

Самые распространенные строительные материалы – дерево, кирпич и бетон – выделяют относительно немного радона (рис.3). Гораздо большей удельной радиоактивностью обладают гранит и пемза, используемые в качество строительных материалов, например, в России и Западной Германии. А некоторые материалы преподнесли строителям, ученым и, конечно же, жителям домов, построенных из этих материалов, неприятные сюрпризы, оказавшись особенно радиоактивными.

Рис. 3. Средняя удельная радиоактивность строительных материалов

В течение нескольких десятков лет, например, глиноземы, использовались в Швеции при производстве бетона, с применением которого было построено 350-700 тысяч домов. Затем неожиданно обнаружили, что глиноземы очень радиоактивны. В середине 80-х годов их применение было резко сокращено, а затем они вовсе перестали использоваться в строительстве. Кальций силикатный шлак – побочный продукт, получаемый при переработке фосфорных руд и обладающий, как выяснилось, довольно высокой удельной радиоактивностью, – применялся в качестве компонента бетона и других строительных материалов во многих странах. Еще один побочный продукт, образующийся при другой технологии переработки фосфорных руд, – широко применялся при изготовлении строительных блоков, сухой штукатурки, перегородок и цемента.

Рис. 4. Влияние проветривания на содержание радона в воздухе жилой комнаты одноквартирного дома

Он дешевле природного гипса, и его применение приветствовалось защитниками окружающей среды, поскольку фосфогипс относится к разряду промышленных отходов и, таким образом, его использование помогает сохранить природные ресурсы и уменьшить загрязнение окружающей среды. В одной только Японии в 1974 году строительная промышленность израсходовала 3 млн. тонн этого материала. Однако фосфогипс обладает гораздо большей удельной радиоактивностью, чем природный гипс, который он был призван заменить, и, повидимому, люди, живущие в домах, построенных с его применением, подвергаются облучению, на 30% более интенсивному, чем жильцы других домов. Согласно полученным оценкам, ожидаемая коллективная эффективная эквивалентная доза облучения в результате применения этого материала составляет ~ 300000 чел-Зв.

Среди других промышленных отходов с высокой радиоактивностью, применявшихся в строительстве, следует назвать кирпич из красной глины-отхода производства алюминия, доменный шлак – отход черной металлургии и зольную пыль, образующуюся при сжигании угля.

Известны случаи применения в строительстве даже отходов урановых рудников. В 1952-1966 годах пустая порода из отвалов обогатительных фабрик, производящих урановый концентрат, применялась в качестве строительного материала и для засыпки строительных площадок под дома. Иногда для строительных целей использовали отходы, остающиеся после извлечения радия из руды. В обоих, случаях пришлось вмешаться правительству и привлечь виновных к судебной ответственности за ущерб, причиненный здоровью людей, которые подверглись ничем не оправданному облучению.

Конечно, радиационный контроль строительных материалов заслуживает самого пристального внимания, однако главный источник радона в закрытых помещениях – это грунт. В некоторых случаях дома возводились прямо на старых отвалах горнодобывающих предприятий, содержащих радиоактивные материалы. Так, в некоторых странах дома оказались построенными на отходах урановых рудников, или ходах переработки глинозема, на отходах, оставшихся после извлечения радия, на регенерированной после добычи фосфатов территории. Но даже и в менее экзотических случаях просачивающийся сквозь пол радон представляет собой главный источник радиоактивного облучения населения в закрытых помещениях.

В Хельсинки максимальные концентрации радона, более чем в 5000 раз превосходящие его среднюю концентрацию в наружном воздухе, были обнаружены в домах, где единственным сколько-нибудь значительным его источником мог быть лишь грунт. Даже в Швеции, где при строительстве домов использовали глиноземистые цементы, главной причиной радиации, как показали недавние исследования, является эмиссия радона из земли.

Концентрация радона в верхних этажах многоэтажных домов, как правило, ниже, чем на первом этаже. Исследования, проведенные в Норвегии, показали, что концентрация радона в деревянных домах даже выше, чем в кирпичных, хотя дерево выделяет совершенно ничтожное количество радона по сравнению с другими материалами. Это объясняется тем, что деревянные дома, как правило, имеют меньше этажей, чем кирпичные, и, следовательно, комнаты, в которых проводились измерения, находились ближе к земле-основному источнику радона.

Скорость проникновения исходящего из земли радона в помещения фактически определяется толщиной и целостностью (т.е. количеством трещин и микротрещин) межэтажных перекрытий. Этот вывод подтвердился при инспекции домов, построенных на регенерированных после добычи фосфатов землях, а иногда, например, в домах, стоящих прямо на земле, с земляными подвалами, были зарегистрированы концентрации радона, в 100 раз превышающие его средний уровень в наружном воздухе, хотя удельная радиоактивность грунта была самая обычная.

Из всего сказанного следует, что после заделки щелей в полу и стенах какоголибо помещения концентрация радона там должна уменьшиться. Исследования в этом направлении продолжаются, но некоторые обнадеживающие результаты уже получены. Особенно эффективное средство уменьшения количества радона, просачивающегося через щели в полу, вентиляционные установки в подвалах. Кроме того, эмиссия радона из стен уменьшается в 10 раз при облицовке стен пластиковыми материалами типа полиамида, поливинилхлорида, полиэтилена или после покрытия стен слоем краски на эпоксидной основе или тремя слоями масляной краски. Даже при оклейке стен обоями скорость эмиссии радона уменьшается примерно на 30%.

Еще один, как правило, менее важный, источник поступления радона в жилые помещения представляют собой вода и природный газ (рис. 5). Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из некоторых источников, особенно из глубоких колодцев или артезианских скважин, содержит много радона. Такое высокое содержание радона было обнаружено, например, в воде артезианских колодцев в Финляндии и США, в том числе в системе водоснабжения Хельсинки; и примерно в той же концентрации в воде, поступающей в город Хот-Спрингс (шт. Аркавэае). Наибольшая зарегистрированная удельная радиоактивность воды в системах водоснабжения составляет 100 млн. Бк/м3, наименьшая равна нулю. По оценкам НКДАР ООН, среди всего населения Земли менее 1% жителей потребляет воду с удельной радиоактивностью более 1 млн. Бк/м3 и менее 10% пьют воду с концентрацией радона, превышающей 100000 Бк/м3.