Тогда (2.47) можно записать как
или, принимая L2>l0 окончательно
и
(2.50)В максимуме, когда
Откуда
и
(2.51)Видно, что, как и в темноте, с увеличением l0 в распределении ловушек положение максимума смещается вправо.
Подставляя (2.51) в (2.50) находим после преобразования
(2.52)Освещение не меняет ширины области пространственного заряда, которая, как и раньше, контролируется только глубиной распространения ловушек. Тогда мы вправе применить (2.37)
в котором константа А определяется (2.16) как
Тогда выражение в квадратных скобках в (2.52) имеет вид
С учетом этого (2.52) упрощается:
(2.53)величина a<l0и L2>l0. Полагая для простоты сравнения
(2.54)видим, что первое слагаемое в (2.53) почти точно соответствует первой компоненте в темновой функции (2.36)
с учетом (2.16) расписывается в виде (2.55)Из совместного рассмотрения (2.51), (2.35) и (2.54) следует
В таком случае (2.55) представим как
(2.56)где В – некоторая константа меньшая или близкая к единице.
Формула (2.56) позволяет сравнить второе слагаемое с выражением в формуле (2.53). С учетом того, что
и к тому же управляется технологически, получим, что на свету барьер оказывается несколько выше.ГЛАВА 3
Фотоэлектрические свойства кристаллов, обработанных в газовом разряде
3.1 Технология легирования образцов
Обычно введение леганта в полупроводник производится нанесением соответствующего вещества на поверхность в избыточных количествах с последующим разогревом. При этом за счет градиента концентрации стандартным механизмом диффузии вещество транспортируется вглубь полупроводника.
В работе [2] описан способ создания электронных ловушек на поверхности полупроводника за счет обработки ее газовым разрядом. Преимущества этой методики связаны с присутствием электрического поля при технологических операциях. Варьируя величину и направление этого поля можно контролировать процесс внедрения дефектов и профиль их распределения.
Повышение температуры в некоторых пределах облегчит этот процесс. При этом существуют некоторые пороговые значения разогрева, выше которых за счет энергии активации ловушки теряют заряд и перестают реагировать на приложенное поле. Очевидно, что в этом случае преимуществом обладают глубокие ловушки, позволяющие за счет теплового возбуждения решетки увеличивать в большей мере подвижность примесных ионов.
Возбуждение полупроводника собственным светом также активизирует процесс легирования, поскольку в этом случае должна возрастать доля ловушек, захвативших заряд.
В [8] приводятся данные, указывающие на значительную миграцию ионов примеси в широкозонных полупроводниках в полях порядка 105 В/м.
Комбинированное воздействие теплом и светом может существенно понизить эту напряженность поля для формирования в контролируемых условиях распределения примеси вида (2.1б).
Помимо создания электронных ловушек и управляемого процесса внедрения их в объем полупроводника, предлагаемый метод обработки в коронном разряде способствует образованию доноров на поверхности образца [3]. То же электрическое поле, которое способствует оттоку электронных ловушек, аккумулирует доноры в приповерхностных слоях, увеличивая их проводимость. При этом возникает возможность производить обработку кристаллов с уже нанесенными контактами и в том же цикле производить измерения без напуска воздуха в камеру. Хотя часть поверхности полупроводника непосредственно под контактом в этом случае и не подвергается бомбардировке ионами плазмы, за счет повышенной поверхностной проводимости носители тока растекаются от контакта, а затем устремляются сквозь образец к противоположному контакту. При этом линии тока совпадают с направлением, по которому распространялись электронные ловушки.
Наш образец представлял собой прямоугольную пластину монокристаллического сульфида кадмия толщиной ~ 1,5 мм и площадью фронтальной поверхности около одного квадратного сантиметра. Кристалл помещался в вакуумную камеру, где создавалось разряжение порядка 10-2¸10-3 мм.рт.ст.
Катод был изготовлен из медной проволоки толщиной 0,8 мм. Устойчивый симметричный разряд (рис.3.1.б) удавалось создать, когда концу катода придавалась коническая форма. При недостаточной степени разряжения в камере разряд переходил в лавинный и шнуровался, причём в рабочей области высоких напряжений момент шнурования практически не зависел от поля. Все приведённые ниже результаты получены после обработки в режиме тлеющего разряда. Попытки создать барьер, описанный в главе второй, после воздействия лавинного разряда успеха не имели.
Рис.3.1. Конструкция разрядника (а), обработка образцов в вакууме
в газовом разряде (б)
Первоначально катод располагался на расстоянии 5-6 мм от образца. Однако лучшие результаты (см.п.3.2) получены при величине зазора 8-12 мм. Мы связываем это с тем, что при недостаточной величине промежутка истекающие электроны не набирали достаточной энергии для создания дефектов в структуре исследуемого кристалла.
Высокое напряжение порядка 4 – 5 кВ создавалось с помощью высоковольтного выпрямителя “Разряд-1”. При этом, принципиальным отличием от описанного ранее (см. [1-3, 5]) является использование именно постоянного напряжения для обработки. Для напряжений, меньших указанных, в результате обработки формировались условия, при которых спектральное распределение фото-э.д.с. дважды оказывалась с переменной знака (см. п.3.4).
3.2 Вольт-амперные характеристики исследуемых структур
Для обработки в газовом разряде подбирались образцы, обладающие симметричными линейными графиками ВАХ как в темноте, так и на свету (рис.3.2. крив 1). Использовались достаточно фоточувствительные кристаллы.Рис.3.2 Вольтамперные характеристики образца на свету до (1) и после (2) обработки газовым разрядом.
До начала технологических операций при освещении белым светом порядка 100 – 200 лк типичным являлось уменьшение сопротивления от 108÷109 Ом в темноте до (1÷3)•103Ом на свету.
В обоих случаях – и в темноте, и при освещении – после технологического процесса кривые проходили ниже. Это означает, что общее сопротивление кристалла возросло, что вполне соответствует выводам главы 2. После появления электронных ловушек первоначально низкоомная область пространственного заряда омического контакта в результате образования барьера значительно повышает сопротивление.
Кривые оказались сверхлинейными, в целом соответствующими по виду прямой ветви диодной ВАХ. В таком случае, применяя обычную методику, по касательной к графику при больших напряжениях получено, что после обработки в газовом разряде сопротивление базы в темноте составляло ~ 5×104 Ом, на свету (2¸3)104 Ом. Незначительное отличие полученных значений подтверждает сделанный в главе 2 вывод о том, что ширина образовавшегося барьера определяется только глубиной проникновения ловушек. В далёких от поверхности кристалла слоях ловушек очень мало и поэтому все они оказываются уже заполненными в темноте. Свет не изменяет их заполнения и, значит, ширины ОПЗ, а вместе с ней и сопротивления.
Экстраполяция касательных до пересечения с осью абсцисс позволила определить, что высоты левого и правого ската барьера (см. рис 2.1.а) в темноте и на свету немного отличались. Как и ожидалось (см. п. 2.6), на свету барьер несколько возрастает.