Уменьшение остаточной проводимости происходит в области 5 вблизи омического контакта 1 в результате рекомбинации «запасенных» на глубоких уровнях электронов со свободными дырками.
Таким образом, экспериментальные результаты показывают, что объяснение эффектов изменения фотопроводимости в пленочных сэндвич-структурах из селенида и сульфида кадмия возможно только на основе рассмотрения условий неоднородного фотовозбуждения.
1.5 Обогащенный контактный слой в отсутствие тока
В соответствии с работой [7] рассмотрим распределение потенциала в случае обогащенного контактного слоя (euk< 0 и в несколько раз превышает кТ) (рис. 1.4). При этом удобно раздельно рассматривать область вблизи объемного заряда контакта 1 и остальную толщу полупроводника 2, где зоны можно считать уже неискривленными. Тогда мы имеем
(1.1) и уравнение Пуассона:
где nk – концентрация электронов на поверхности.
Умножая обе части этого уравнения на
/dx и интегрируя по получаемПостоянная интегрирования С определяется из условия, что на границе обеих областей
φ=uk,
=0Поэтому
Отсюда видно, что, вследствие условия (1.1), для области вблизи контакта постоянной С можно пренебречь по сравнению с первым слагаемым. Поэтому
Так как мы рассматриваем обогащенный слой в электронном полупроводнике, то φ < 0 и увеличивается по абсолютной величине с увеличением х, а, следовательно, нашей задаче соответствует знак минус. Интегрируя это уравнение еще раз по х в пределах от 0 до х, находим распределение потенциала в виде
(1.2)
где а есть характеристическая длина:
С точностью до множителя 2-1/2 это есть не что иное, как длина экранирования, в которой, однако, концентрация электронов в глубине образца п0заменена ее значением на контакте пк. Таким образом, потенциал вблизи контакта изменяется по логарифмическому закону. Распределение концентрации электронов выражается соотношением
(1.3)Вдали от контакта (область 2)
φ=uk,
Распределение потенциала и концентрации электронов в слое полупроводника между двумя одинаковыми металлическими электродами с обогащенными слоями схематически показано на рис. 1.4.
Таким образом, прилегающие к металлическим электродам слои полупроводника, толщина которых ~ а, могут “заливаться” носителями заряда. При этом концентрация носителей вблизи контактов, как показывает формула (1.3), не зависит от их концентрации в глубине полупроводника, которая может быть как угодно мала (изолятор). Поэтому электропроводность такого контакта может быть велика, даже если удельная электропроводность полупроводника (в отсутствие контакта) ничтожно мала, например, в случае широкозонных CdS, CdSe, ZnS и т.д.
ГЛАВА 2
Энергетическая структура омического контакта в присутствии неравномерно распределенных электронных ловушек
2.1. Влияние ловушек на структуру барьера.
Предварительный анализ
Пусть в такой полупроводник введены электронные ловушки Nt , концентрация которых уменьшается от поверхности вглубь объема по закону
(2.1)где Nt0 – это их концентрация на геометрической поверхности, а l0 – характерная длина, показывающая, на каком расстоянии число ловушек убывает в е раз.
Энергия активации этих ловушек Ес–Еt. Тогда, непосредственно у контакта (область I рис. 2.1), ловушки оказываются под уровнем Ферми. Такие ловушки сильно заполнены электронами независимо от концентрации свободного заряда. На самой поверхности расстояние их от энергии Ферми и, следовательно, заполнение будет максимальным. Поэтому в точке х=0 появление таких ловушек концентрации свободных электронов и распределение энергии не поменяют. По-прежнему они описываются формулами (1.2) и (1.3).
Как видно из рис. 2.1, чем больше глубина ловушек Ес–Еt, тем шире область I, обогащенная электронами, поскольку до больших координат х ловушки находятся под - и в области уровня Ферми.
При этом, как будет подробнее показано в п.2.2, чем больше первоначальная концентрация ловушек Nt0, тем круче уходит вверх зависимость
. Оба эти фактора, действуя совместно, должны обеспечивать большую высоту образовавшегося барьера (см. п.2.2).Наоборот, в глубине объема при x > L1появление электронных ловушек ситуацию изменит существенно. Ловушки заполнены частично и способны захватить дополнительный заряд. При этом концентрация свободного заряда, первоначально составляющего п0 (кривая 1 рис. 2.1а), должна уменьшаться, что сопровождается увеличением расстояния от дна зоны проводимости до уровня Ферми.
Рассмотрим край фронта распространения примеси Nt (область III рис 2.1а). Концентрация ловушек в области x = L1 исчезающе мала (см. формулу 2.1) поэтому в целом она остается электронейтральной. Часть свободного заряда переходит на ловушки. Уравнение электронейтральности в этом случае выглядит так:
(2.2)С учетом того, что численно концентрация ионизированных доноров
равна n0, из (2.2) получаемгде φ(x) → 0 небольшое возмущение края зоны проводимости. Тогда, раскладывая в ряд экспоненту, определяем:
откуда
(2.3)По мере уменьшения координаты x в сторону поверхности, значение энергии края зоны проводимости возрастает, хотя и не очень значительно. Даже если весь свободный заряд n0, перейдет на ловушки
(2.4)то φ=kT (на границе областей II и III)
Указанных процессов на краях ОПЗ достаточно для предсказания изменения распределения потенциала. Если в глубине объема кривая потенциала Ес(x) устремляется вверх, а на самом контакте с металлом приходит в ту же точку, где находилась без учета ловушек, то в целом профиль ОПЗ должен иметь вид колоколообразного максимума (кривая 2 рис. 2.1а). Причем его ширина контролируется только глубиной проникновения электронных ловушек, определяемой технологическими факторами обработки кристалла.
2.2. Распределение энергии в приконтактных слоях
полупроводника с ловушками для электронов
Определим профиль барьера в области I рис. 2.1а с помощью уравнения Пуассона
(2.5)где φ – энергия (поэтому в коэффициенте перед квадратной скобкой применено е2).
= n0<< nk в соответствии с данными 2.1. Используя выражения (1.4) и (2.1) формула (2.5) приобретает вид (2.6)Отметим, что отрицательные значения второй производной указывают на вогнутость функции φ1 в пределах области I.
Первое интегрирование (2.6) приводит к выражению
(2.7)После второго интегрирования
(2.8)