Смекни!
smekni.com

Трансформаторы 4 (стр. 4 из 22)

Ранее при рассмотрении режима холостого хода мы пренебрегали полем вне сердечника трансформатора. В действительности это поле согласно закону полного тока должно существовать. Оно называется полем рассеяния. Созданные им потокосцепления обмоток малы по сравнению с потокосцеплениями обмоток, созданными главным потоком. С большим приближением к действительным условиям можно считать, что поле рассеяния и поле в сердечнике, соответствующее главному потоку, существуют независимо одно от другого.

На рис. 2-13 представлена приближенная картина поля рассеяния, которую кладут в основу расчета потокосцеплений рассеяния. Здесь пунктирной линией показан путь главного потока Ф, сплошными линиями показаны индукционные линии поля рассеяния. Они могут быть условно разделены на две группы: сцепляющиеся с первичной обмоткой и сцепляющиеся со вторичной обмоткой. Магнитные сопротивления для потоков соответствующих индукционных трубок рассеяния определяются в основном сопротивлениями тех их частей, которые проходят вдоль обмоток и в промежутке между ними Их можно принять постоянными, поскольку потоки трубок проходят по материалам (медь, изоляция, воздух или масло), для которых μ = const. Магнитными сопротивлениями потоков трубок вне обмоток и промежутка между ними можно пренебречь, так как здесь они проходят в основном по стали сердечника.

Рис. 2-13. Приближенная картина поля рассеяния трансформатора с концентрическими обмотками, где крестиками и точками условно показаны направления токов в обмотках для рассматриваемого момента времени.

Таким образом, потокосцепления рассеяния и созданные ими э.д.с. рассеяния можно принять пропорциональными н.с. или токам соответствующих обмоток и считать индуктивности Lσ1 и Lσ2, а следовательно

и
, постоянными величинами. Индуктивное сопротивление взаимоиндукции
зависит от Ф, однако в пределах небольшого изменения Фм и, следовательно, Е1 можно принять
также постоянным.

С учетом приведенных равенств (2-35) уравнения напряжений (2-24а) и (2-25а) для установившегося режима могут быть написаны в комплексной форме:

(2-36)

(2-37)

Уравнения (2-36) и (2-37) называются векторными уравнениями напряжений трансформатора (здесь имеются в виду временные векторы напряжений, э.д.с. и токов).

В реальном трансформаторе со стальным сердечником при его работе возникают магнитные потери. Для их учета мы должны считать, так же как при холостом ходе, что ток

имеет наряду с реактивной составляющей
активную составляющую
[см. уравнения (2-9) — (2-13)]; однако обе эти составляющие мы должны отнести не к
а к
, так как они зависят от Фм.

Вследствие нелинейной связи между потоком Ф и результирующим током

кривая последнего при синусоидальном потоке Ф будет несинусоидальной (§ 2-13). Для облегчения анализа зависимостей, характеризующих работу трансформатора, ток
принимается синусоидальным с действующим значением, равным тому же значению действительного тока. Такое допущение не может привести к заметной ошибке из-за относительной малости тока
.

в) Приведение величин вторичной обмотки к числу витков первичной обмотки.

Указанное приведение получим, если помножим уравнение (2-37) на отношение чисел витков

соответственно будем иметь

(2-38)

где

;
[согласно (2-8)];

(2-39)

представляют собой величины вторичной обмотки, приведенные к числу витков первичной обмотки. Такое приведение величин вторичной обмотки облегчает исследование работы трансформатора: делает более удобным построение для него векторных диаграмм (§ 2-4,г), позволяет построить удобную для расчетов схему соединения его активных и индуктивных сопротивлений, называемую схемой замещения трансформатора, где магнитная связь между обмотками заменена электрической связью между ними (§ 2-5).

Можно считать, что приведение величин вторичной обмотки к числу витков первичной обмотки сводится к замене действительной обмотки с числом витков

обмоткой с числом витков
, причем при такой замене н.с.
должна остаться, как отмечалось, неизменной и равной
, а также должны остаться неизменными относительные значения падений напряжения и электрические потери в обмотке:

Из этих равенств, учитывая, что

и
, мы можем также найти соотношения между приведенными и действительными величинами вторичной обмотки. Они получаются такими же, как и (2-39).

г) Векторные диаграммы.

Векторные диаграммы наглядно показывают соотношения между токами, э.д.с. и напряжениями обмоток. Они строятся в соответствии с уравнениями (2-19), (2-36) и (2-38).

На рис. 2-14 — 2-16 представлены диаграммы трансформатора, работающего с различными нагрузками.

Рис. 2-14. Векторная диаграмма трансформатора работающего с отстающим током.

Рис. 2-15. Векторная диаграмма трансформатора, работающего с

1.

Рис. 2-16. Векторная диаграмма трансформатора, работающего с опережающим током.

Векторная диаграмма трансформатора, работающего, например, с отстающим током (рис. 2-14), при заданных

может быть построена следующим образом.

Зная

найдем
и
. Построим в выбранном масштабе для токов и напряжений векторы
и
так, чтобы они были сдвинуты на угол
Прибавляя к
векторы падений напряжения
и
найдем э.д.с.
(мы предполагаем, что сопротивления
и
, а также
и
известны). Вектор потока
опережает э.д.с.
на 90°. Ток
опережает поток на угол
. Вторая составляющая
первичного тока
равна и противоположна по фазе вторичному току
следовательно, вектор первичного тока определяется геометрическим сложением:
. Первичное напряжение
, имеет составляющую
, уравновешивающую э.д.с.
, и составляющие
и
равные соответственно активному и индуктивному падениям напряжения в первичной обмотке (
совпадает по фазе с током
опережает ток
на 90°).