Рис. 2-71. Примерная форма кривой электрического импульса при грозовых разрядах.
Здесь время подъема напряжения от нуля до максимума, достигающего пяти- шестикратного значения амплитуды фазного напряжения, измеряется иногда десятыми долями микросекунды (отрезок
В этом случае обмотка высшего напряжения, обычно состоящая из последовательно соединенных катушек, может быть заменена цепочкой емкостей, показанной на рис. 2-72,а, где С3 — емкости между катушками и землей; Ск — емкости между катушками.
Рис. 2-72. Приближенная схема замещения трансформатора при высокочастотных процессах (a); кривые распределения напряжения вдоль обмотки (б).
Распределение напряжения вдоль обмотки получается неравномерным (кривая а на рис. 2-72,б), так как токи, проходящие по емкостям Ск, будут неодинаковы. Они больше вблизи линейного конца и меньше вблизи заземленной нейтрали. Показанное распределение напряжения называется емкостным.
После затухания свободных полей получим равномерное распределение напряжения вдоль обмотки (кривая b на рис. 2-72,б). Теперь оно будет обусловлено только индуктивными и активными сопротивлениями катушек и будет соответствовать установившемуся режиму работы при нормальной частоте тока.
Кривая а на рис. 2-72,б показывает, что при начальном распределении напряжения большая его часть приходится на первые катушки, и, следовательно, их изоляция подвергается наибольшей опасности. Опыт это подтверждает, так как пробои изоляции чаще всего имеют место именно на первых катушках, поэтому их часто выполняют с усиленной изоляцией.
Переход от начального распределения напряжения к установившемуся (от кривой а к кривой b) сопровождается колебательными процессами и перенапряжениями резонансного характера, так как здесь вступают в действие не только емкостные, но и индуктивные связи между катушками. Опытные исследования этих процессов показывают, что высокие градиенты электрического поля получаются также для средних и нижних катушек, но все же наибольшие значения они имеют для начальных катушек.
В крупных трансформаторах на напряжения 115, 220 кВ и выше применяется так называемая емкостная компенсация. Сущность ее заключается в применении добавочных емкостей, выполненных в виде особой формы экранов, окружающих обмотку высшего напряжения (рис. 2-73,а).
Рис. 2-73. Частичная емкостная компенсация катушечной обмотки (a); соответствующая схема замещения (б).
При этом получается схема замещения, показанная на рис. 2-73,б. Емкости С'э, С"э, С"'э,…можно подобрать таким образом, чтобы токи по емкостям Ск были приблизительно одинаковы хотя бы на протяжении 40 — 50% длины обмотки. Тогда начальное распределение становится более равномерным и перенапряжения между катушками будут значительно снижены.
Высоковольтные трансформаторы с емкостной компенсацией, конструкция которых разработана на заводах советской электропромышленности, являются достаточно надежными, что подтверждается длительным сроком их эксплуатации на линиях Советского Союза.
2-21. Трансформаторы специального назначения
а) Измерительные трансформаторы.
1. Трансформаторы напряжения.
Трансформаторы напряжения (ТН на рис. 2-74) служат для понижения напряжения (обычно до 100 — 150 В), так как вольтметры и катушки напряжения ваттметров и счетчиков (или реле) не могут быть включены непосредственна на высокое напряжение из-за недостаточной изоляции измерительных приборов и необходимости обеспечить безопасность обслуживающего персонала.
Рис. 2-74. Схема включения трансформаторов напряжения (ТН) и тока (ТТ).
Они выполняются как двухобмоточные трансформаторы и электрически отделяют цепь приборов от цепи высокого напряжения; их вторичная цепь надежно заземляется.
По принципу действия трансформаторы напряжения не отличаются от ранее рассмотренных двухобмоточных трансформаторов. Для их исследования можно применить векторные диаграммы (например, рис. 2-14) или уравнения напряжений и токов (2-41), (2-42) и (2-43). Из этих уравнений следует:
где
При расчете трансформатора напряжения и его выполнении стремятся к тому, чтобы погрешности, вносимые им в измерения, были как можно меньше. Различают следующие погрешности измерения: погрешность напряжения
и угловую погрешность δu, равную углу между
Из (2-187) следует, что обе погрешности fu и δu будут тем меньше, чем больше сопротивление прибора
Трансформаторы напряжения имеют максимальные погрешности в зависимости от класса точности, установленные ГОСТ: класс 0,5 — fu = ±0,5% и δu = ±20'; класс 1 — fu = ±1%, и δu = ±40'; класс 3 — fu = ±3% (δu не нормируется). Прецизионные трансформаторы напряжения для точных лабораторных измерений имеют fu » ±0,2% и δu » ±10'.
Номинальные мощности трансформаторов напряжения лежат примерно в пределах 25 — 300 ВА. Они обычно могут быть длительно нагружены по условиям нагрева (без соблюдения точности в отношении fu и δu) до мощности, в 5 — 8 раз превышающей номинальную.
2. Трансформаторы тока.
Трансформаторы тока (ТT на рис. 2-74) также выполняются в виде двухобмоточных трансформаторов. Их первичная обмотка включается в цепь последователи с потребителями, ток которых надо измерить; во вторичную обмотку включаются амперметр, реле, а при измерении мощности и энергии — токовые катушки ваттметра и счетчика. Все приборы во вторичной цепи соединяются последовательно.
При помощи трансформатора тока цепь приборов электрически отделяется от первичной цепи и вторичная обмотка надежно заземляется, что необходимо, если первичная обмотка включается в цепь высокого напряжения.
Отношение токов трансформатора тока практически равно обратному отношению чисел витков:
Исследование трансформатора тока может быть проведено с помощью схемы замещения (рис. 2-17) или уравнений напряжении и токов (2-41), (2-42) и (2-43).
Из этих уравнений следует:
где
Равенство (2-188) показывает, что отношение токов будет тем ближе к обратному отношению чисел витков, чем меньше