Смекни!
smekni.com

Трансформаторы 4 (стр. 18 из 22)

2-20. Переходные процессы в трансформаторах

В предыдущих параграфах рассматривались установившиеся режимы работы трансформаторов, когда значения амплитуд токов, напряжений, э.д.с. и потоков длительно остаются неизменными.

Переходные процессы получаются при переходе от одного установившегося режима работы к другому. Такой переход не совершается мгновенно, так как энергия магнитных и электрических полей, связанных с цепями, различна при различных установившихся режимах, а для конечного изменения энергии полей необходимо некоторое время. Изменение энергии полей сопровождается возникновением так называемых свободных полей и соответствующих им токов и напряжений, накладывающихся на токи и напряжения установившегося режима.

При переходных процессах результирующие токи, а, также напряжения на отдельных частях обмоток могут значительно превышать те же величины при установившихся режимах, что необходимо учитывать при проектировании и эксплуатации трансформаторов и электрических машин.

а) Включение трансформатора.

Будем рассматривать переходный процесс при включении ненагруженного трансформатора. Для этого случая можем написать:

(2-169)

где Ф — полный поток сцепляющийся со всеми витками первичной обмотки, а ψ — угол, определяющий мгновенное значение напряжения в момент включения трансформатора (при t = 0). Так как в трансформаторе со стальным сердечником поток Ф и ток i1 связаны сложной зависимостью, то приходится искать приближенное решение.

Можем заменить:

(2-170)

где L1 — статическая индуктивность, являющаяся функцией потока Ф. Теперь уравнение (2-169) примет вид:

(2-171)

Второй член левой части количественно в обычных случаях значительно меньше, чем первый член; поэтому примем, что L1 не зависит от потока и представляет собой постоянную величину. Тогда получаем уравнение с постоянными коэффициентами, которое решается обычным способом. Его решение состоит из двух слагаемых:

Ф = Ф' + Ф'', (2-172)

где Ф' — мгновенное значение установившегося потока, а Ф'' — мгновенное значение свободного потока.

Установившийся поток

(2-173)

Рис. 2-69. Изменение потока при наихудших условиях включения трансформатора.

Свободный поток определяется из уравнения

(2-174)

интеграл которого имеет вид:

(2-175)

Постоянная интегрирования С находится из начальных условий. Рассмотрим случай, когда в момент включения в сердечнике трансформатора имел место поток остаточного магнетизма ±Фост. Тогда при t = 0 согласно (2-172) и (2-173)

(2-176)

откуда

и

(2-177)

Подставляя найденные значения Ф' и Ф" в (2-172), получим:

(2-178)

Наиболее благоприятные условия получаются при включении, когда

(при
) и Фост = 0. В этом случае имеем:

(2-179)

т. е. с первого же момента устанавливается нормальный поток, а следовательно, и ток холостого хода.

Наихудшие условия включения получим при ψ = 0 (при u1 = 0) и при Фост направленном против Ф'. В этом случае

(2-180)

Поток Ф достигает наибольшего значения, спустя приблизительно полпериода после включения, т. е. при ωt

π. Если принять Фост =0,5Фм, то для наибольшего значения потока можем, следовательно, написать (рис. 2-69):

(2-181)

Найдя кривую изменения потока, можно при помощи кривой намагничивания трансформатора (рис. 2-70) построить кривую намагничивающего тока.

Рис. 2-70. К определению «броска тока» при включении по кривой намагничивания трансформатора.

Мы видим, что при наиболее неблагоприятном случае ток холостого хода достигает весьма большого значения, в десятки раз превышающего максимальное значение установившегося тока холостого хода. Такой «бросок тока» следует иметь в виду, например, при опыте холостого хода: токовые цепи прецизионных измерительных приборов во избежание поломки стрелок нужно до включения трансформатора шунтировать

Приведенное решение, как отмечалось, является приближенным, так как не были учтены поле рассеяния, действие вихревых токов и непостоянство L1. Однако опыт подтверждает, что броски тока при включении трансформатора достигают указанных значений.

б) Внезапное короткое замыкание.

Наибольшие токи в обмотках трансформатора получаются при трехфазном коротком замыкании. Мы ранее нашли, что установившийся ток короткого замыкания равен Iк =

При U = Uн он достигает весьма большого значения. Оно может быть найдено из следующего соотношения:

(2-182)

где

– номинальное напряжение короткого замыкания.

Задача определений тока для переходного процесса достаточно точно решается при пренебрежении током холостого хода. Мы в этом случае в дифференциальных уравнениях напряжений обмоток

(2-183)

(2-184)

приняв w1 = w2 можем положить i1 = -i2.

Тогда, вычитая (2-184) из (2-183) и исключая i2 при помощи равенства i1 = -i2, получим:

(2-185)

Так как

где Lк и rк — индуктивность и активное сопротивление при коротком замыкании, то (2-185) можем переписать в следующем виде:

(2-185а)

Таким образом, переходный ток здесь определяется так же, как для реактивной катушки, включенной на синусоидальное напряжение.

Он состоит из установившегося тока и свободного, затухающего в соответствии с постоянной времени

Если пренебречь затуханием свободного, тока, то в самом неблагоприятном случае мгновенное значение тока короткого, замыкания iм будет в 2 раза, а с учетом затухания свободного тока — в 1,5

1,8 раза больше амплитуды установившегося тока, т. е.

(2-186)

Если, например, uк = 6%, то

Такие токи в обмотках трансформатора создают очень большие электромагнитные силы, опасные в отношении механической прочности обмоток. При конструировании обмоток их необходимо принимать во внимание, особенно в случае мощных трансформаторов, где эти силы на единицу длины обмотки иногда получаются настолько большими, что приходится для таких трансформаторов брать повышенные значения uк, чтобы уменьшить ток короткого замыкания. Кроме того, следует по возможности выполнять трансформаторы с обмотками одинаковой высоты. Если высоты обмоток неодинаковы, то возникают большие аксиальные силы, которые могут привести к разрушению изоляции с последующим пробоем ее.

в) Перенапряжения в трансформаторах.

Перенапряжения, возникающие в трансформаторах, могут быть вызваны различными причинами. Из них главнейшие: процессы при включении и выключении трансформатора; короткие замыкания и повторные заземляющие дуги на линии передачи, к которой присоединен трансформатор; грозовые разряды вблизи линии. Наибольшие перенапряжения в обмотках трансформатора получаются при грозовых разрядах. Они называются атмосферными перенапряжениями.

В большинстве случаев грозовые разряды создают в линии апериодические электрические импульсы большой амплитуды и малой продолжительности действия. Примерная форма такого импульса показана на рис. 2-71.